Подъемная сила крыла самолета. Почему летают самолёты Факторы, влияющие на дальность полёта

Cлайд 1

Проект по физике на тему: Выполнил: Попов Руслан, ученик 10 «А» класса НОУ «Средняя общеобразовательная школа№38 ОАО «РЖД» Учитель: Валовень С. А. г. Мичуринск, 2008г

Cлайд 2

Cлайд 3

Cлайд 4

Подъёмная сила крыла (обозначим её F) возникает благодаря тому, что поперечное сечение крыла представляет собой чаще всего несимметричный профиль с более выпуклой верхней частью. Крыло самолёта или планера, перемещаясь, рассекает воздух. Одна часть струек встречного потока воздуха пойдёт под крылом, другая – над ним. F меню далее выход

Cлайд 5

У крыла верхняя часть более выпуклая, чем нижняя, следовательно, верхним струйкам придётся пройти больший путь, чем нижним. Однако количество воздуха, набегающего на крыло и стекающего с него, одинаково. Значит, верхние струйки, чтобы не отставать от нижних, должны двигаться быстрей. Давление под крылом больше, чем над крылом. Эта разность давлений и создаёт аэродинамическую силу R, одной из составляющих которой является подъёмная сила F. меню далее выход

Cлайд 6

Подъёмная сила крыла тем больше, чем больше угол атаки, кривизна профиля, площадь крыла, плотность воздуха и скорость полёта, причём от скорости подъёмная сила зависит в квадрате. Угол атаки должен быть меньше критического значения, при повышении которого подъёмная сила падает. меню далее выход α

Cлайд 7

Развивая подъёмную силу, крыло всегда испытывает и лобовое сопротивление X направленное против движения и, значит, тормозит его. Подъёмная сила перпендикулярна набегающему потоку. Сила R называется полной аэродинамической силой крыла. Точку приложения аэродинамической силы называют центром давления крыла (ЦД). меню далее выход

Cлайд 8

F = CF 2/2 S – формула для расчёта подъёмной силы, где: F - подъёмная сила крыла, СF – коэффициент подъёмной силы, S – площадь крыла. R = CR 2/2 S – формула для расчёта аэродинамической силы, где: CR – коэффициент аэродинамической силы. S – площадь крыла. меню выход

Cлайд 9

Подъёмная сила летательного аппарата, уравновешивая его вес, даёт возможность осуществлять полёт, лобовое же сопротивление тормозит его движение. Лобовое сопротивление преодолевается силой тяги, развиваемой силовой установкой. Силовая установка самолёту нужна для развития подъёмной силы и для перемещения в пространстве. Чем больше скорость, тем больше подъёмная сила. На современных самолётах крылья делают стреловидной конструкции для того, чтобы крыло не разрушалось в полёте от лобового сопротивления. меню далее выход

Cлайд 10

Конструкция авиационных двигателей со временем изменялась. Существуют три основных типа авиационных двигателей: 1. поршневой, 2. турбовинтовой, 3. реактивный. Все эти двигатели различаются по скоростным и тяговым показателям. Реактивный двигатель более совершенен. Современные боевые самолёты с таким типом двигателей превосходят скорость звука в несколько раз. меню далее выход

Cлайд 11

(1847 -1921) Великий русский учёный, основоположник современной гидро- и аэромеханики, «отец русской авиации». Жуковский родился в семье инженера путей сообщения. В 1858 поступил в 4-ю московскую мужскую классическую гимназию и в 1864 окончил её. В этом же году поступил в Московский университет на физико-математический факультет, который окончил в 1868 году по специальности «прикладная математика». В 1882 году Жуковскому была присуждена ученая степень доктора прикладной математики. меню далее выход

Cлайд 12

С начала 20 века основное внимание Жуковского было направленно на разработку вопросов аэродинамики и авиации. В 1904 году под его руководством в посёлке Кучине, под Москвой, был построен первый в Европе аэродинамический институт. Огромную работу провёл Жуковский по подготовке авиационных кадров - конструкторов самолётов и пилотов. Одним из наиболее ярких очагов зарождавшейся отечественной авиационной науки стал кружок воздухоплавания, организованный Н.Е. Жуковским при Московском техническом училище. Именно здесь начинали свой творческий путь ставшие всемирно известными авиационные конструкторы и учёные: А.С. Туполев, В.П. Ветчинскин, Б.Н.Юрьев, Б.С.Стечкин, А.А. Архангельский и многие другие. меню далее выход

Cлайд 13

В 1904 году в Кучинской лаборатории Жуковский сделал замечательное открытие, послужившее основой всего дальнейшего развития современной аэродинамики и её приложение к теории авиации. Жуковский не работал, только когда спал. За свою жизнь он ни разу не летал на самолёте. В связи с первыми успехами авиации перед учёным возникла задача - выяснить источник происхождения подъёмной силы, возможности её увеличения, найти математический метод ее расчёта. 15 ноября 1905 года Жуковский дал формулу для определения подъёмной силы, являющейся основой всех аэродинамических расчётов самолета. меню далее выход 1. Ермаков А. М. «Простейшие авиамодели», 1989 2. Конспекты Кирсановского авиационного технического училища гражданской авиации, 1988 3. БСЭ под ред. Введенского Б. А., т.16 4. Интернет-ресурсы: http://media.aplus.by/page/42/ http://sfw.org.ua/index.php?cstart=502& http://www.atrava.ru/08d36bff22e97282f9199fb5069b7547/news/22/news-17903 http://www.airwar.ru/other/article/engines.html http://arier.narod.ru/avicos/l-korolev.htm http://kto-kto.narod.ru/bl-bl-3/katanie.html http://www.library.cpilot.info/memo/beregovoy_gt/index.htm http://vivovoco.ibmh.msk.su/VV/PAPERS/HISTORY/SIMBIRSK/SIMBIRSK.HTM выход меню

Вопросы для повторения: Какие опыты поставили, чтобы показать роль сил поверхностного натяжения в дыхании? Почему постоянный синтез сурфоктантов помогает нам дышать, и что происходит, когда он прекращается? Почему аквалангисты должны дышать под водой сжатым воздухом? Почему при спуске на большие глубины водолазы не могут использовать сжатый воздух, а должны приготовлять специальные дыхательные смеси? Что такое кессонная болезнь и как её избежать?










Сила сопротивления воздушному потоку Сила сопротивления пропорциональна числу молекул воздуха, которых останавливает крыло, их массе и скорости F сопр поперечное (лобовое) сечение крыла в направлении движения где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла угол атаки


Сила сопротивления изменение импульса воздуха Подъёмная сила воздушного потока mV0mV0 mV1mV1 Подъёмная сила пропорциональна числу молекул воздуха, которых поворачивает крыло, их массе и скорости где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла


















Зависимость скорости самолёта от его массы При неизменной мощности двигателя, чем больше масса самолёта, тем медленнее он летит При неизменной скорости и аэродинамических качествах, т.е. С под /С сопр = const, грузоподъёмность пропорциональна площади крыльев


Есть ли связь между посещаемостью и успеваемостью? посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин?


Посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин? Есть ли связь между посещаемостью и успеваемостью?


Вычисляем коэффициент корреляции (связи), CORR, между успеваемостью и посещаемостью посещаемость, % результаты зачёта средняя посещаемость АБ ВГ средняя успеваемость CORR(10 «Б») = 0

Подъемная сила крыла
Подъемная сила крыла
Автор: Синегубов Андрей
Группа: Э3-42
Художественный руководитель: Бурцев Сергей
Алексеевич

Постановка проблемы

Доклад на тему «Подъемная сила крыла»
Постановка проблемы
1) Почему самолет, весящий более 140
тонн, удерживается в воздухе?
2) Какие силы способствует поднятию
самолета в воздух и нахождение в нем?
2

Модель среды

Доклад на тему «Подъемная сила крыла»
Модель среды
Среда:
- Сплошная. Распределение массы и физико-механических свойств
непрерывны
- Однородная
- Несжимаемая. Плотность среды – постоянная величина
- Идеальная. Частицы ведут себя как упругие шарики, внутри которых нет
касательных напряжений
Движение жидкости:
- Установившееся. Поведение газа с течением времени не изменяется
- Потенциальное. Частицы движутся без вращения
- Двумерное. Линии тока параллельны фиксированной плоскости
- Прямолинейно-поступательное. Все частицы движутся по одной траектории
с равной по величине скоростью и заданным направлением
3

Аэродинамический профиль

Доклад на тему «Подъемная сила крыла»
Аэродинамический профиль
- Поперечное сечение крыла несимметричной формы
4

Контрольная поверхность

5

Контрольная поверхность
Контрольная поверхность – жидкий объем, представляющий
цилиндрическую поверхность, располагающуюся в пределах нашей модели
1) Образующая поверхности –
окружность
2) Центр масс поверхности на
пересечении осей
3) Центр масс поверхности
совпадает с центром масс
аэродинамического профиля,
заключенного в эту поверхность

Расчетные формулы

Доклад на тему «Подъемная сила крыла»
Расчетные формулы
6

Теорема Жуковского

7
Доклад на тему «Подъемная сила крыла»
Теорема Жуковского
Если потенциальный установившийся поток
несжимаемой жидкости обтекает контрольную
поверхность перпендикулярно к образующим, то
на участок поверхности, имеющей длину
образующей, равную единице, действует сила,
направленная к скорости набегающего потока и
равная произведению плотности жидкости на
скорость потока на бесконечности и на
циркуляцию скорости по любому замкнутому
контуру, охватывающему обтекаемый цилиндр.
Направление подъемной силы получается при
этом из направления вектора скорости потока на
бесконечности поворотом его на прямой угол
против направления циркуляции.

Подъемная сила крыла

Доклад на тему «Подъемная сила крыла»
8
Подъемная сила крыла
Чаще всего поперечное сечение представляет собой несимметричный профиль с выпуклой
верхней частью. Перемещаясь, крыло самолета рассекает среду. Одна часть встречных струек
пойдет под крылом другая над крылом. Благодаря геометрии профиля траектория полета
верхних струек по модулю выше нижних, но количество воздуха набегающего на крыло и
стекающего с него одинаковое. Верхние струйки движутся быстрее, то есть как бы догоняют
нижние, следовательно скорость под крылом меньше скорости потока над крылом. Если
обратиться к уравнению Бернулли, то можно заметить, что с давлением ситуация совпадает с
точностью наоборот. Внизу давление высокое, а наверху низкое. Давление снизу создает
подъемную силу, заставляющую самолет подняться в воздух Вследствие такого явления
возникает циркуляция вокруг крыла, которая постоянно поддерживает эту подъемную силу.

Список использованных источников

Доклад на тему «Подъемная сила крыла»
Список использованных источников
Н.Я. Фабрикант. Аэродинамика
http://kipla.kai.ru/liter/Spravochnic_avia_profiley.pdf

Почему летают птицы? Какие силы поднимают самолет? Почему планер парит в воздухе? Гипотеза: летательный аппарат взлетит, если создать необходимые условия Цель исследования: познакомиться с теорией полета; выявить условия, необходимые для полета летательного аппарата. Задачи исследования: Определить условия, необходимые для возникновения подъемной силы крыла; Выявить условия, обеспечивающие устойчивость летательного аппарата. Методы и способы исследования Анализ литературы по проблеме, Опытно- экспериментальная работа по выявлению условий для полета самолета (определение центра тяжести и дальности полёта, влияние положения центра тяжести, винта и формы крыла на дальность полёта). Анализ результатов экспериментальной работы Изучил Три принципа создания подъемной силы, закон Архимеда, закон Бернулли. Узнал Почему и как возникает подъемная сила? (угол атаки, центр давления крыла) Об устойчивости полета, центре тяжести, значении центровки модели для установки прямолинейного движения (смещение центра тяжести). Почему и как летает самолет. Режимы полета. 1. Три принципа создания подъемной силы Аэростатический Аэродинамический Реактивно-ракетный Закон Архимеда Аэростатический принцип cоздания подъемной силы можно объяснить, используя закон Архимеда, одинаково справедливый как для жидкой, так и для воздушной среды: «Сила, выталкивающая целиком погруженное в жидкость или газ тело, равна весу жидкости или газа в объеме этого тела». Летательные аппараты, основанные на аэростатическом принципе, называются воздушными шарами или аэростатами. Закон Бернулли Аэродинамический принцип объясняется законом Бернулли. создания Если скорость обтекания воздухом верхней кромки крыла больше, чем нижней. То давление воздуха на нижнюю кромку больше, чем на верхнюю. р2+1/2ρѵ 22 =p1 +1/2 ρѵ 21, ∆р=р2-р1=1/2 ρ(ѵ21-ѵ22). Подъемная сила планеров, самолетов, вертолётов создается по аэродинамическому принципу. 2. Почему и как возникает подъемная сила Николай Егорович Жуковский Y- Подъемная сила крыла, R - аэродинамическая сила, Х - сила лобового сопротивления, ЦД - центр давления крыла 3. Как обеспечивается устойчивость полета Разновидности винтов и их применение Сход воздушных вихрей с концов лопастей воздушного винта. Реактивные двигатели турбореактивный турбовинтовой 4. Режимы полета самолета Y-Подъемная сила крыла, R- аэродинамическая сила, Х- сила лобового сопротивления, P-сила тяги винта Пусть самолет летит прямолинейно по горизонтальной траектории с некоторой постоянной воздушной сила R. Разложим эту силу на две -перпендикулярно направлению полета Y и по полету X. На самолет действует сила тяжести G. По величине силы Y и G должны быть равны, иначе самолет не будет лететь горизонтально. На самолет действует сила тяги винта Р, которая направлена по направлению движения самолета. Эта сила уравновешивает силу лобового сопротивления. Итак, при установившемся горизонтальном полете, подъемная сила крыла равна силе тяжести самолета, а тяга винта - лобовому сопротивлению. При отсутствии равенства этих сил движение называется криволинейным. P- сила тяги винта, Y-подъемная сила крыла, R- аэродинамическая сила, Х- сила лобового сопротивления, G,G1,G2-силы тяжестей. Рассмотрим теперь, какие силы действуют на самолет при установившемся подъеме. Подъемная сила У направлена перпендикулярно движению самолета, сила лобового сопротивления Х – прямо против движения, сила тяги Р- по движению и сила тяжести Gвертикально вниз. Y-Подъемная сила крыла, R- аэродинамическая сила, Х- сила лобового сопротивления G,G1,G2-силы тяжести. Планирование характеризуется непрерывной потерей высоты. Сила R должна уравновешивать силу G. Благодаря действию силы G 2 , уравновешивающей лобовое сопротивление Х, и возможное планирование самолета. Анализ результатов исследования Условия, необходимые для полёта изучены и проверены на моделях. Журнал исследований Основные показатели моделей Длина, см Время, с Скорость, м/с Модель 180 0,56 3,21 Пенопластовый планер 180 0,94 1,91 Пенопластовая резиномоторка 180 0,59 3,05 Бумажный планер 180 0,63 2,85 Планер «Колибри» 180 0,90 2,00 Резиномоторка Характеристики моих моделей модель + Резиномоторка Наличие винта, форма крыльев, размеры крыла, нервюры на стабилизаторе, съёмность всех деталей Небольшие размеры – меньше лобовое сопротивление Винт «Ушки» (устойчивость в полете) Прочный Вес резиномотора Винт-сопротивление в планировании Прочность, лёгкость, наличие винта - Планер «Колибри» Пенопластовая резиномоторка Планер пенопластовый Электролёт - Грузик – большой вес, нет нервюр на стабилизаторе,не съёмность деталей Хрупкость,вес резиномотора,распорная мачта (лобовое сопротивление) Грузик – большой вес Зависимость величины крутящего момента резиномотора от длины и поперечного сечения жгута длина, см сечение жгута, см² крутящий момент, кг/см 30 0,24* 0,100 40 0,40 0,215 45 0,56 0,356 50 0,64 0,433 55 0,80* 0,800 Подъемная сила крыла моделей Модель Подъемная сила крыла моделей Резиномоторка 0,21 Н Планер «Колибри» 0,48 Н Пенопластовый планер 0,21 Н Пенопластовая резиномоторка. 0,07 Н ИТОГИ ЭКСПЕРИМЕНТОВ 1.В каждом классе своя модель сильна; 2.Нельзя сравнивать разные классы моделей между собой. 3.Можно сравнивать: резиномоторки с одинаковым весом резиномотора; кордовые с одинаковым объемом двигателя; планера одинакового размера. Выводы по работе: Таким образом, изучив материал о теории полета, принципах и причинах возникновения подъемной силы, я сделал вывод о том, что для того, чтобы летательный аппарат полетел, необходимы следующие условия: Правильная центровка крыла; Достаточная сила тяги винта; Правильное расположение центра тяжести летательного аппарата; В процессе исследования моя гипотеза о необходимости определенных условий для полета летательного аппарата оказалась верной. Библиография 1. 2. 3. 4. 5. 6. Ермаков А.М. Простейшие авиамодели. Москва, Просвещение, 1984г. Гаевский О.К. Авиамоделирование. Москва, Просвещение, 1964г. Дузь П.Д. История воздухоплавания и авиации в СССР. Москва, Просвещение, 1960г. Интернет-сайты Анощенко Н.Д. Воздухоплаватели. Москва, Просвещение, 2004 г. Детская энциклопедия. Техника. Москва, Аванта +, 2007 г.

Похожие публикации