Определить степень окисления в соединениях hno3. Степень окисления hno3. Основные схемы окислительно-восстановительных реакций

Суть метода электронного баланса заключается в:

  • Подсчете изменения степени окисления для каждого из элементов, входящих в уравнение химической реакции
  • Элементы, степень окисления которых в результате произошедшей реакции не изменяется - не принимаются во внимание
  • Из остальных элементов, степень окисления которых изменилась - составляется баланс, заключающийся в подсчете количества приобретенных или потерянных электронов
  • Для всех элементов, потерявших или получивших электроны (количество которых отличается для каждого элемента) находится наименьшее общее кратное
  • Найденное значение и есть базовые коэффициенты для составления уравнения.

Визуально алгоритм решения задачи с помощью метода электронного баланса представлен на диаграмме.

Как это выглядит на практике, рассмотрено на примере задач по шагам .

Задача .
Методом электронного баланса подберите коэффициенты в схемах следующих окислительно-восстановительных реакций с участием металлов:

А) Ag + HNO 3 → AgNO 3 + NO + H 2 O
б) Ca +H 2 SO 4 → CaSO 4 + H 2 S + H 2 O
в) Be + HNO 3 → Be(NO 3) 2 + NO + H 2 O

Решение .
Для решения данной задачи воспользуемся правилами определения степени окисления .

Применение метода электронного баланса по шагам. Пример "а"

Составим электронный баланс для каждого элемента реакции окисления Ag + HNO 3 → AgNO 3 + NO + H 2 O.

Шаг 1 . Подсчитаем степени окисления для каждого элемента, входящего в химическую реакцию.

Ag. Серебро изначально нейтрально, то есть имеет степень окисления ноль.


Для HNO 3 определим степень окисления, как сумму степеней окисления каждого из элементов .

Степень окисления водорода +1, кислорода -2, следовательно, степень окисления азота равна:

0 - (+1) - (-2)*3 = +5

(в сумме, опять же, получим ноль, как и должно быть)

Теперь перейдем ко второй части уравнения.

Для AgNO 3 степень окисления серебра +1 кислорода -2, следовательно степень окисления азота равна:

0 - (+1) - (-2)*3 = +5

Для NO степень окисления кислорода -2, следовательно азота +2

Для H 2 O степень окисления водорода +1, кислорода -2

Шаг 2. Запишем уравнение в новом виде , с указанием степени окисления каждого из элементов, участвующих в химической реакции.

Ag 0 + H +1 N +5 O -2 3 → Ag +1 N +5 O -2 3 + N +2 O -2 + H +1 2 O -2

Из полученного уравнения с указанными степенями окисления, мы видим несбалансированность по сумме положительных и отрицательных степеней окисления отдельных элементов .

Шаг 3 . Запишем их отдельно в виде электронного баланса - какой элемент и сколько теряет или приобретает электронов:
(Необходимо принять во внимание, что элементы, степень окисления которых не изменилась - в данном расчете не участвуют )

Ag 0 - 1e = Ag +1
N +5 +3e = N +2

Серебро теряет один электрон, азот приобретает три. Таким образом, мы видим, что для балансировки нужно применить коэффициент 3 для серебра и 1 для азота. Тогда число теряемых и приобретаемых электронов сравняется.

Шаг 4 . Теперь на основании полученного коэффициента "3" для серебра, начинаем балансировать все уравнение с учетом количества атомов, участвующих в химической реакции.

  • В первоначальном уравнении перед Ag ставим тройку, что потребует такого же коэффициента перед AgNO 3
  • Теперь у нас возник дисбаланс по количеству атомов азота. В правой части их четыре, в левой - один. Поэтому ставим перед HNO 3 коэффициент 4
  • Теперь остается уравнять 4 атома водорода слева и два - справа. Решаем это путем применения коэффииента 2 перед H 2 O


Ответ:
3Ag + 4HNO 3 = 3AgNO 3 + NO + 2H 2 O

Пример "б"

Составим электронный баланс для каждого элемента реакции окисления Ca +H 2 SO 4 → CaSO 4 + H 2 S + H 2 O

Для H 2 SO 4 степень окисления водорода +1 кислорода -2 откуда степень окисления серы 0 - (+1)*2 - (-2)*4 = +6

Для CaSO 4 степень окисления кальция равна +2 кислорода -2 откуда степень окисления серы 0 - (+2) - (-2)*4 = +6

Для H 2 S степень окисления водорода +1, соответственно серы -2

Ca 0 +H +1 2 S +6 O -2 4 → Ca +2 S +6 O -2 4 + H +1 2 S -2 + H +1 2 O -2
Ca 0 - 2e = Ca +2 (коэффициент 4)
S +6 + 8e = S -2

4Ca + 5H 2 SO 4 = 4CaSO 4 + H 2 S + 4H 2 O

А. H2S Б.SO3 В.H2SO3

2. Степень окисления углерода в карбонате кальция равна:
А. -4 Б.+2 В.+4

3. Вещество, в котором степень окисления фосфора равна нулю:
А. P4 Б.PH3 В.P2O5

4.Окислительно-восстановительной является реакция, уравнение которой:
А.2Al(OH)3=Al2O3+3H2O Б.H2+Cl2=2HCl В.NaOH+HNO3=NaNO3+H2O

5. Окислителем в химической реакции, CuO+H2=Cu+H2O является:
А.H20 Б.Cu2+ В.O2- Г.Cu0

6. Степень окисления хлора уменьшается в ряду:
А.Cl2– HCl–HClO Б.NaCl–Cl2–KClO3 В.HClO4–NaClO2–BaCl2

7.Процесс перехода, схема которого N-3→N+2 является:
А. Восстановлением
Б.Окислением
В. Не окислительно-восстановительным процессом.

8. В уравнении реакции S+O2→SO2 число электронов, отданных окислителем, равно:
А. 2 Б.4 В.6

9. Фосфор в степени окисления 0 может являться:
А.Только восстановителем
Б.Только окислителем
В.Окислителем и восстановителем

10.Простое вещество – неметалл, обладающее наиболее сильными окислительными свойствами:
А. Br2
Б. Cl2
В. F2

Часть Б.
11. Составьте формулы оксида азота (III) и оксида азота (V)

12. Расставите коэффициенты в схеме реакции методом электронного баланса:
Ca + O2 = CaO
Назовите процессы окисления и восстановления, и укажите окислитель и восстановитель.

13. Расположите формулы химических соединений: CH4, CO2, CO – в порядке уменьшения степеней окисления атомов углерода.

14. По схеме Сu+2 + 2ē → Cu0 составьте уравнение химической реакции и рассмотрите её с точки зрения ОВР.

15. Дополните фразу: «Восстановление – это....»

1) допишите уравнения реакций,укажите степени окисления элементов и расставьте коэффициенты методом электронного баланса: Са+О2 ->, N2+H2 ->. 2)

определите степень окисления каждого элемента,расставьте коэффициенты методом электронного баланса: KCIO3+S -> KCI+SO2. 3) определите пожалуйста степень окисления серы в следующих соединениях: H2SO4, SO2, H2S, SO2, H2SO3. 4 в сторону атомов какого химического элемента смещаются общие электронные пары в молекулах следующих соединений: H2O, HI, PCI3, H3N, H2S, CO2? дайте пожалуйста обоснованный ответ! 5) скажите, изменяются ли степени окисления атомов при образовании воды из водорода и кислорода? 6) напишите уравнения электролитической диссоциации: нитрата меди, соляной кислоты, сульфата алюминия, гидроксида бария, сульфата цинка. 7) пожалуйста напишите молекулярные и ионные уравнения реакций между растворами: гидроксида лития и азотной кислоты, нитрата меди и гидроксида натрия, карбоната калия и фосфорной кислоты. 8) при взаимодействии растворов каких веществ одним из продуктов реакции является вода? K2CO3 и HCI: Ca(OH)2 и HNO3: NaOH и H2SO4: NaNO3 и H2SO4? напишите пожалуйста уравнения реакций в молекулярной и ионной формулах. 9) какие из перечисленных солей подвергаются гидролизу при растворении в воде: хлорид алюминия, сульфид калия, хлорид натрия? Напишите уравнения, отвечающие гидролизу.

Рассмотрим степени окисления всех элементов в азотной кислоте. Кислород в сложных соединениях почти всегда находится в степени окисления -2 (за исключением пероксидов, надоксидов, фторида кислорода и т.д.). Атом водорода, который обязательно входит в состав протонных кислот, имеет степень окисления +1. Чтобы определить степень окисления атома азота, необходимо решить простое уравнение. Пусть х - степень окисления азота, тогда, по принципу электронейтральности молекулы, 1 + х + 3 * (-2) = 0, откуда х = 5. Ответ: степени окисления элементов в азотной кислоте равны +1, +5, -2 для водорода, азота и кислорода соответственно.

В данном задании вам необходимо определить степень окисления следующего соединения:

Определите последовательность выполнения данного задания

  • Запишите что означает степень окисления;
  • Определите степень окисления азотной кислоты;
  • Запишите описание.

Степень окисления в данном соединении следующая

Степень окисления - вспомогательная условная величина для записи процессов окисления, восстановления и окислительно - восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле.

Представления о степени окисления элементов положены в основу и используются при классификации химических веществ, описании их свойств, составлении формул соединений и их международных названий (номенклатуры). Но особенно широко оно применяется при изучении окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность.

Степень окисления указывается сверху над символом элемента. В отличие от указания заряда иона, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот.

Степень окисления (в отличие от валентности) может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху.

Степень окисления азотной кислоты следующая:

HNO3 - степень окисления водорода + 1, степень окисления азота + 5, степень окисления кислорода - 2.

Соединения со степенью окисления –3. Соединения азота в степени окисления -3 представлены аммиаком и нитридами металлов.

Аммиак - NH 3 - бесцветный газ с характерным резким запахом. Молекула аммиака имеет геометрию тригональной пирамиды с атомом азота в вершине. Атомные орбитали азота находятся в sp 3 -гибридном состоянии. Три орбитали задействованы в образовании связей азот-водород, а четвертая орбиталь содержит неподеленную электронную пару, молекула имеет пирамидальную форму. Отталкивающее действие неподеленной пары электронов приводит к уменьшению валентного угла от ожидаемого 109,5 до 107,3 °.

При температуре -33,4 °С аммиак конденсируется, образуя жидкость с очень высокой теплотой испарения, что позволяет использовать его в качестве хладагента в промышленных холодильных установках.

Наличие у атома азота неподеленной электронной пары позволяет ему образовать еще одну ковалентную связь по донорно-акцепторному механизму. Таким образом в кислой среде происходит образование молекулярного катиона аммония - NH 4 + . Образование четвертой ковалентной связи приводит к выравниванию валентных углов (109,5 °) за счет равномерного отталкивания атомов водорода.

Жидкий аммиак хороший самоионизирующийся растворитель:

2NH 3 NH 4 + + NH 2 -

амид-анион

В нем растворяются щелочные и щелочноземельные металлы, образуя окрашенные токопроводящие растворы. В присутствии катализатора (FeCl 3) растворенный металл реагирует с аммиаком c выделением водорода и образованием амида, например:

2Na + 2NH 3 = 2NaNH 2 + H 2 ­

амид натрия

Аммиак очень хорошо растворим в воде (при 20 °С в одном объеме воды растворяется около 700 объемов аммиака). В водных растворах проявляет свойства слабого основания.

NH 3 + H 2 O ® NH 3 ×H 2 O NH 4 + + OH -

= 1,85·10 -5

В атмосфере кислорода аммиак горит с образованием азота, на платиновом катализаторе аммиак окисляется до оксида азота(II):

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 4NH 3 + 5O 2 = 4NO + 6H 2 O

Как основание аммиак реагирует с кислотами, образуя соли катиона аммония, например:

NH 3 + HCl = NH 4 Cl

Соли аммония хорошо растворимы в воде и слабо гидролизованы. В кристаллическом состоянии термически нестойки. Состав продуктов термолиза зависит от свойств кислоты, образующей соль:

NH 4 Cl ® NH 3 ­ + HCl­; (NH 4) 2 SO 4 ® NH 3 ­ + (NH 4)HSO 4

(NH 4) 2 Cr 2 O 7 ® N 2 + Cr 2 O 3 + 4H 2 O

При действии на водные растворы солей аммония щелочей при нагревании выделяется аммиак, что позволяет использовать данную реакцию как качественную на соли аммония и как лабораторный метод получения аммиака.

NH 4 Cl + NaOH = NaCl + NH 3 ­ + H 2 О

В промышленности аммиак получают прямым синтезом.

N 2 + 3H 2 2NH 3

Поскольку реакция сильно обратима, синтез ведут при повышенном давлении (до 100 мПа). Для ускорения процесс проводят в присутствии катализатора (губчатое железо, промотированное добавками) и при температуре около 500 °С.

Нитриды образуются в результате реакций многих металлов и неметаллов с азотом. Свойства нитридов закономерно изменяются в периоде. Например, для элементов третьего периода:

Нитриды s-элементов I и II групп представляют собой кристаллические солеподобные вещества, легко разлагающиеся водой с образованием аммиака.

Li 3 N + 3H 2 O = 3LiOH + NH 3

Из нитридов галогенов в свободном состоянии выделен только Cl 3 N, кислотный характер проявляется в реакции с водой:

Cl 3 N + 3H 2 O = 3HClO + NH 3

Взаимодействие нитридов разной природы приводит к образованию смешанных нитридов:

Li 3 N + AlN = Li 3 AlN 2 ; 5Li 3 N + Ge 3 N 4 = 3Li 5 GeN 3

нитридоалюминат нитридогерманат(IV) лития

Нитриды ВN, AlN, Si 3 N 4 , Ge 3 N 4 – твердые полимерные вещества с высокими температурами плавления (2000-3000 °С), они полупроводники или диэлектрики. Нитриды d-металлов - кристаллические соединения переменного состава (бертолиды), очень твердые, тугоплавкие и химически устойчивые, проявляют металлические свойства: металлический блеск, электропроводность.

Соединения со степенью окисления –2. Гидразин - N 2 H 4 - наиболее важное неорганическое соединение азота в степени окисления -2.

Гидразин представляет собой бесцветную жидкость, с температурой кипения 113,5 °С, дымящуюся на воздухе. Пары гидразина чрезвычайно ядовиты и образуют с воздухом взрывообразные смеси. Получают гидразин, окисляя аммиак гипохлоритом натрия:

2N -3 H 3 + NaCl +1 O = N 2 -2 H 4 + NaCl -1 + H 2 O

Гидразин смешивается с водой в любых соотношениях и в растворе ведет себя как слабое двухкислотное основание, образуя два ряда солей.

N 2 H 4 + H 2 O N 2 H 5 + + OH - , K b = 9,3×10 -7 ;

катион гидрозония

N 2 H 5 + + H 2 O N 2 H 6 2+ + OH - , K b = 8,5×10 -15 ;

катион дигидрозония

N 2 H 4 + HCl N 2 H 5 Cl; N 2 H 5 Cl + HCl N 2 H 6 Cl 2

хлорид гидрозония дихлорид дигидрозония

Гидразин сильнейший восстановитель:

4KMn +7 O 4 + 5N 2 -2 H 4 + 6H 2 SO 4 = 5N 2 0 + 4Mn +2 SO 4 + 2K 2 SO 4 + 16H 2 O

Несимметричный диметилгидразин (гептил) широко применяется в качестве ракетного топлива.

Соединения со степенью окисления –1. Гидроксиламин - NH 2 OH - основное неорганическое соединение азота в степени окисления -1.

Получают гидроксиламин восстановлением азотной кислоты водородом в момент выделения при электролизе:

HNO 3 + 6H = NH 2 OH + 2H 2 O

Это бесцветное кристаллическое вещество (т.пл. 33 °С), хорошо растворимое в воде, в которой проявляет свойства слабого основания. С кислотами дает соли гидроксиламмония – устойчивые бесцветные вещества, растворимые в воде.

NH 2 OH + H 2 O + + OH - , K b = 2×10 -8

ион гидроксиламмония

Атом азота в молекуле NH 2 OН проявляет промежуточную степень окисления (между -3 и +5) поэтому гидроксиламин может выступать как в роли восстановителя, так и в роли окислителя:

2N -1 H 2 OH + I 2 + 2KOH = N 0 2 + 2KI + 4H 2 O;

восстановитель

2N -1 H 2 OH + 4FeSO 4 + 3H 2 SO 4 = 2Fe 2 (SO 4) 3 + (N -3 H 4) 2 SO 4 + 2H 2 O

окислитель

NH 2 OН легко разлагается при нагревании, подвергаясь диспропорционированию:

3N -1 H 2 OH = N 0 2 + N -3 H 3 + 3H 2 O;

Соединения со степенью окисления +1. Оксид азота(I) - N 2 O (закись азота, веселящий газ). Строение его молекулы можно передать резонансом двух валентных схем, которые показывают, что рассматривать это соединение как оксид азота(I) можно только формально, реально это оксонитрид азота(V) - ON +5 N -3 .

N 2 O - бесцветный газ со слабым приятным запахом. В малых концентрациях вызывает приступы безудержного веселья, в больших дозах оказывает общее анестезирующее действие. Смесь закиси азота (80%) и кислорода (20%) использовалась в медицине для наркоза.

В лабораторных условиях оксид азота(I) можно получить разложением нитрата аммония. N 2 O, полученный данным методом, содержит примеси высших оксидов азота, которые чрезвычайно токсичны!

NH 4 NO 3 ¾® N 2 O + 2H 2 O

По химическим свойствам оксид азота(I) типичный несолеобразующий оксид, с водой, кислотами и щелочами не реагирует. При нагревании разлагается с образованием кислорода и азота. По этой причине N 2 O может выступать в роли окислителя, например:

N 2 O + H 2 = N 2 + H 2 O

Соединения со степенью окисления +2. Оксид азота(II) - NO - бесцветный газ, чрезвычайно токсичен. На воздухе быстро окисляется кислородом с образованием не менее токсичного оксида азота(IV). В промышленности NO получают окислением аммиака на платиновом катализаторе или, пропуская воздух через электрическую дугу (3000-4000 °С).

4NH 3 + 5О 2 = 4NО + 6H 2 О; N 2 + O 2 = 2NO

Лабораторным методом получения оксида азота(II) является взаимодействие меди с разбавленной азотной кислотой.

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO­ + 4H 2 O

Оксид азота(II) - несолеобразующий оксид, сильный восстановитель, легко реагирует с кислородом и галогенами.

2NO + O 2 = 2NO 2 ; 2NO + Cl 2 = 2NOCl

хлористый нитрозил

В то же время, при взаимодействии с сильными восстановителями NO выполняет функцию окислителя:

2NO + 2H 2 = N 2 + 2H 2 O; 10NO + 4Р = 5N 2 + 2Р 2 O 5

Соединения со степенью окисления +3. Оксид азота(III) - N 2 O 3 - жидкость интенсивно синего цвета (т.кр. -100 °С). Устойчив только в жидком и твердом состоянии при низких температурах. По-видимому, существует в двух формах:

Получают оксид азота(III) совместной конденсацией паров NO и NO 2 . В жидкости и в парах диссоциирует.

NO 2 + NO N 2 O 3

По свойствам типичный кислотный оксид. Реагирует с водой, образуя азотистую кислоту, с щелочами образует соли - нитриты.

N 2 O 3 + H 2 O = 2HNO 2 ; N 2 O 3 + 2NaOH = 2NaNO 2 + H 2 O

Азотистая кислота - кислота средней силы (K a = 1×10 -4). В чистом виде не выделена, в растворах существует в двух таутомерных формах (таутомеры - изомеры, находящиеся в динамическом равновесии).

нитрито-форма нитро-форма

Соли азотистой кислоты устойчивы. Нитрит-анион проявляет ярко выраженную окислительно-восстановительную двойственность. В зависимости от условий он может выполнять как функцию окислителя, так и функцию восстановителя, например:

2NaNO 2 + 2KI + 2H 2 SO 4 = I 2 + 2NO + K 2 SO 4 + Na 2 SO 4 + 2H 2 O

окислитель

KMnO 4 + 5NaNO 2 + 3H 2 SO 4 = 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

восстановитель

Азотистая кислота и нитриты склонны к диспропорционированию:

3HN +3 O 2 = HN +5 O 3 + 2N +2 O + H 2 O

Соединения со степенью окисления +4. Оксид азота(IV) - NO 2 - бурый газ, с резким неприятным запахом. Чрезвычайно токсичен! В промышленности NO 2 получают окислением NO. Лабораторным методом получения NO 2 является взаимодействие меди с концентрированной азотной кислотой, а также термическое разложение нитрата свинца.

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2

Молекула NO 2 имеет один неспаренный электрон и является стабильным свободным радикалом, поэтому оксид азота легко димеризуется.

Процесс димеризации обратим и очень чувствителен к температуре:

парамагнитен, диамагнитен,

бурый бесцветен

Диоксид азота - кислотный оксид, взаимодействует с водой, образуя смесь азотной и азотистой кислоты (смешанный ангидрид).

2NO 2 + H 2 O = HNO 2 + HNO 3 ; 2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Соединения со степенью окисления +5. Оксид азота(V) - N 2 O 5 - белое кристаллическое вещество. Получается дегидратацией азотной кислоты или окислением оксида азота(IV) озоном:

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3 ; 2NO 2 + O 3 = N 2 O 5 + O 2

В кристаллическом состоянии N 2 O 5 имеет солеподобное строение - + - , в парах (т.возг. 33 °С) - молекулярное.

N 2 O 5 - кислотный оксид - ангидрид азотной кислоты:

N 2 O 5 + H 2 O = 2HNO 3

Азотная кислота - HNO 3 - бесцветная жидкость с температурой кипения 84,1 °С, при нагревании и на свету разлагается.

4HNO 3 = 4NO 2 + O 2 + 2H 2 O

Примеси диоксида азота придают концентрированной азотной кислоте желто-бурую окраску. С водой азотная кислота смешивается в любых соотношениях и является одной из сильнейших минеральных кислот, в растворе нацело диссоциирует.

Строение молекулы азотной кислоты описывается следующими структурными формулами:

Сложности с написанием структурной формулы HNO 3 вызваны тем обстоятельством, что, проявляя в данном соединении степень окисления +5, азот, как элемент второго периода, может образовать только четыре ковалентные связи.

Азотная кислота - один из сильнейших окислителей. Глубина ее восстановления зависит от многих факторов: концентрация, температура, восстановитель. Обычно при окислении азотной кислотой образуется смесь продуктов восстановления:

HN +5 O 3 ® N +4 O 2 ® N +2 O ® N +1 2 O ® N 0 2 ® +

Превалирующим продуктом окисления концентрированной азотной кислотой неметаллов и неактивных металлов является оксид азота(IV):

I 2 + 10HNO 3 (конц) = 2HIO 3 + 10NO 2 + 4H 2 O;

Pb + 4HNO 3 (конц) = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

Концентрированная азотная кислота пассивирует железо и алюминий. Алюминий пассивируется даже разбавленной азотной кислотой. Азотная кислота любой концентрации не действует на золото, платину, тантал, родий и иридий. Золото и платина растворяется в царской водке - смеси концентрированной азотной и соляной кислот в соотношении 1: 3.

Au + HNO 3 + 4HCl = H + NO + 2H 2 O

Сильное окисляющее действие царской водки обусловлено образование атомарного хлора при распаде хлористого нитрозила - продукта взаимодействия азотной кислоты с хлороводородом.

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O;

NOCl = NO + Cl×

Эффективным растворителем малоактивных металлов является смесь концентрированной азотной и плавиковой кислот.

3Ta + 5HNO 3 + 21HF = 3H 2 + 5NO + 10H 2 O

Разбавленная азотная кислота при взаимодействии с неметаллами и малоактивными металлами восстанавливается преимущественно до оксида азота(II), например:

3P + 5HNO 3 (разб) + 2H 2 O = 3H 3 PO 4 + 5NO­;

3Pb + 8HNO 3 (разб) = 3Pb(NO 3) 2 + 2NO­ + 4H 2 O

Активные металлы восстанавливают разбавленную азотную кислоту до N 2 O, N 2 или NH 4 NO 3 , например,

4Zn + 10HNO 3 (разб) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Основная масса азотной кислоты идет на производство удобрений и взрывчатых веществ.

Получают азотную кислоту в промышленности контактным или дуговым способом, которые отличаются первой стадией - получением оксида азота(II). Дуговой способ основан на получении NO при пропускании воздуха через электрическую дугу. В контактном способе NO получают окислением аммиака кислородом на платиновом катализаторе. Далее оксид азота(II) окисляется до оксида азота(IV) кислородом воздуха. Растворяя NO 2 в воде в присутствии кислорода получают азотную кислоту с концентрацией 60-65%.

4NO 2 + O 2 + 2H 2 O = 4HNO 3

При необходимости азотную кислоту концентрируют перегонкой с концентрированной серной кислотой. В лаборатории 100 %-ную азотную кислоту можно получить действием концентрированной серной кислоты на кристаллический нитрат натрия при нагревании.

NaNO 3 (кр) + H 2 SO 4 (конц) = HNO 3 ­ + NaHSO 4

Соли азотной кислоты - нитраты - хорошо растворимы в воде, термически неустойчивы. Разложение нитратов активных металлов (исключая литий), стоящих в ряду стандартных электродных потенциалов левее магния, приводит к образованию нитритов. Например:

2KNO 3 = 2KNO 2 + O 2

При разложении нитратов лития, магния, а также нитратов металлов, расположенных в ряду стандартных электродных потенциалов правее магния, вплоть до меди, выделяется смесь оксида азота(IV) и кислорода. Например:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Нитраты металлов, расположенных в конце ряда активности, разлагаются до свободного металла:

2AgNO 3 = 2Ag + 2NO 2 + O 2

Нитраты натрия, калия и аммония широко используются для производства пороха и взрывчатых веществ, а также в качестве азотных удобрений (селитры). В качестве удобрений используют также сульфат аммония, аммиачную воду и карбамид (мочевину) - полный амид угольной кислоты:

Азид водорода (динитридонитрат) - HN 3 (HNN 2) – бесцветная летучая жидкость (т.пл. –80 °С, т.кип. 37 °С) с резким запахом. Центральный атом азота находится в sp-гибридизации, степень окисления +5, соседние с ним атомы имеют степень окисления –3. Структура молекулы:

Водный раствор HN 3 – азотистоводородная кислота по силе близка к уксусной, K a = 2,6×10 -5 . В разбавленных растворах устойчива. Её получают взаимодействием гидразина и азотистой кислоты:

N 2 Н 4 + HNO 2 = HN 3 + 2Н 2 О

По окислительным свойствам HN 3 (HN +5 N 2) напоминает азотную кислоту. Так, если при взаимодействии металла с азотной кислотой образуются оксид азота(II) и вода, то с азотистоводородной кислотой – азот и аммиак. Например,

Cu + 3HN +5 N 2 = Cu(N 3) 2 + N 2 0 ­ + NH 3

Смесь HN 3 и HCl ведет себя подобно царской водке. Соли азотистоводородной кислоты - азиды. Относительно устойчивы только азиды щелочных металлов, при температуре > 300 °С они разрушаются без взрыва. Остальные распадаются со взрывом при ударе или нагревании. Азид свинца используют в производстве детонаторов:

Pb(N 3) 2 = Pb + 3N 2 0 ­

Исходным продуктом для получения азидов является NaN 3 , который образуется в результате реакции амида натрия и оксида азота(I):

NaNH 2 + N 2 O = NaN 3 + H 2 O

4.2.Фосфор

Фосфор представлен в природе одним изотопом - 31 Р, кларк фосфора равен 0,05 мол.%. Встречается в виде фосфатных минералов: Ca 3 (PO 4) 2 - фосфорит, Ca 5 (PO 4) 3 X (X = F,Cl,OH) - апатиты. Входит в состав костей и зубов животных и человека, а также в состав нуклеиновых кислот (ДНК и РНК) и аденозинфосфорных кислот (АТФ, АДФ и АМФ).

Получают фосфор восстановлением фосфорита коксом в присутствии диоксида кремния.

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 2P­ + 5CO

Простое вещество - фосфор - образует несколько аллотропных модификаций, из которых основными являются белый, красный и черный фосфор. Белый фосфор образуется при конденсации паров фосфора и представляет собой белое воскоподобное вещество (т.пл. 44 °С), нерастворимое в воде, растворимое в некоторых органических растворителях. Белый фосфор имеет молекулярное строение и состоит из тетраэдрических молекул P 4 .

Напряженность связей (валентный угол P-P-P составляет всего 60 °) обусловливает высокую реакционную способность и токсичность белого фосфора (смертельная доза около 0,1 г). Поскольку белый фосфор хорошо растворим в жирах, в качестве антидота при отравлении нельзя применять молоко. На воздухе белый фосфор самопроизвольно воспламеняется, поэтому хранят его в герметически упакованной химической посуде под слоем воды.

Красный фосфор имеет полимерное строение. Получается при нагревании белого фосфора или облучении его светом. В отличие от белого фосфора малореакционноспособен и нетоксичен. Однако остаточные количества белого фосфора могут придавать красному фосфору токсичность!

Черный фосфор получается при нагревании белого фосфора под давлением 120 тыс.атм. Имеет полимерное строение, обладает полупроводниковыми свойствами, химически устойчив и нетоксичен.

Химические свойства. Белый фосфор самопроизвольно окисляется кислородом воздуха при комнатной температуре (окисление красного и черного фосфора идет при нагревании). Реакция протекает в два этапа и сопровождается свечением (хемилюминесценция).

2P + 3O 2 = 2P 2 O 3 ; P 2 O 3 + O 2 = P 2 O 5

Ступенчато происходит также взаимодействие фосфора с серой и галогенами.

2P + 3Cl 2 = 2PCl 3 ; PCl 3 + Cl 2 = PCl 5

При взаимодействии с активными металлами фосфор выступает в роли окислителя, образуя фосфиды - соединения фосфора в степени окисления -3.

3Ca + 2P = Ca 3 P 2

Кислотами-окислителями (азотная и концентрированная серная кислоты) фосфор окисляется до фосфорной кислоты.

P + 5HNO 3 (конц) = H 3 PO 4 + 5NO 2 ­ + H 2 O

При кипячении с растворами щелочей белый фосфор диспропорционирует:

4P 0 + 3KOH + 3H 2 O = P -3 H 3 ­ + 3KH 2 P +1 O 2

фосфин гипофосфит калия

Похожие публикации