Однородные и неоднородные структуры. Влияние легирующих элементов на свойства стали Полосчатость структуры металла

Проблемы и решения структурной неоднородности (полосчатость), ее причины появления

На практике стали в отличие от идеальных - неоднородны и несовершенны как по составу, так и по своему строению: макро-, микро- и тонкой структуре. Величина, характер и степень равномерности распределения этих несовершенств и определяет свойства реальных сплавов, их поведение в процессах обработки, их прочность и работоспособность в конкретных условиях службы деталей. Схематично неоднородность состава и несовершенства строения кристаллов и кристаллитов можно разделить на два вида: биографические и обработки.

Биографические несовершенства, прежде всего, связаны с исходным составом сплава и условиями его кристаллизации. Наиболее ярким примером такого несовершенства в реальных сталях является зональная и особенно дендритная ликвация, под которой понимается химическая неоднородность сплава в пределах одного кристалла (кристаллита). Большинство элементов в стали, включая углерод, ликвируют от оси дендрита к междуосным пространствам. Совместная ликвация элементов-примесей может и усиливать и ослаблять степень дендритной химической неоднородности легированных сталей.

Для потребителя стали важна не столько сама междендритная неоднородность стали, а связанная с ней полосчатость структуры, строчечное расположение отдельных ее составляющих (неметаллических включений, карбидов), анизотропность механических свойств деформированной стали. Степень анизотропности оценивают по величине отношения значения того или иного свойства (ув, ут, д, ш, ан), определенного при испытании образцов, вырезанных в направлении прокатки, к тем же характеристикам, определенным на образцах, вырезанных поперек направления течения металла.

Чем сильнее загрязнена сталь неметаллическими включениями (особенно нитевидной формы), чем больше в ней содержится карбидов, нитридов и других труднорастворимых соединений, тем ниже оказываются механические свойства стали в поперечном направлении.

Несовершенства обработки также могут влиять на развитие полосчатости в стали. Несовершенства обработки могут быть связаны с:

Процессами нагрева - аустенизации, гомогенизации и т.д.;

С условиями охлаждения;

С процессами стабилизации сплава (отпуском, старением, коагуляцией карбидной фазы);

Со специально создаваемой химической или физической неоднородностью

Высокотемпературный нагрев - гомогенизация - в известной мере устраняет химическую неоднородность стали в пределах кристалла. Вместе с тем аустенизация, гомогенизация может приводить и к диаметрально противоположному процессу - к появлению неоднородности состава в микрообъемах при наличии в стали малых количеств поверхностно активных относительно железа (горофильных) элементов. Происходит образование концентрационной неоднородности в объеме зерна. С обогащением его граничных или межблочных зон каким-либо элементом или элементами, характерной особенностью которых является значительная разница в величинах их атомных радиусов, по сравнению с атомным радиусом растворителя (в стали - железа является проявлением внутренней адсорбции сплава. Перераспределение отдельных легирующих элементов (или примесей в объеме зерна при нагреве стимулируется способностью чужеродных атомов понижать избыточную энергию структурных неоднородностей. Особенно заметное влияние на свойства сплава оказывает внутренняя адсорбция тогда, когда в результате уменьшения поверхности грани: (например, при росте зерна аустенита в процессе высокотемпературное нагрева) концентрация горофильного элемента превзойдет (при выдержке или в процессе последующего быстрого охлаждения) предел растворимости. В этом случае становится возможным локальный распад твердое раствора с выделением дисперсных частиц избыточной фазы, хотя усредненный состав сплава еще далек от достижения предела растворимости.: Ванадий и ниобий являются элементами поверхностно активными относительно железа. Концентрационную неоднородность стали в микрообъемах нередко удается наблюдать при металлографическом исследовании с применением обычного или специальные методов травления. Обогащение границ зерен горофильными элементами, снижающими их поверхностную энергию, оказывает, согласно В.И. Архарову, огромное влияние на диффузионную способность стали и на уровень механических и химических свойств сплава в целом.

В процессе горячей обработки давлением слитка его дендритная структура разрушается и дендриты вытягиваются в направлении деформации. Междендритные пространства, содержащие большое количество примесей и неметаллических включений, также деформируются и образуются характерные волокна. Такое строение, называемое полосчатостью, влияет на механические свойства, главным образом на ударную вязкость; она выше в продольном направлении и ниже в поперечном направлении (по отношению к направлению течения металла при прокатке). В меньшей степени подобная полосчатость влияет на пластичность (относительное удлинение и сужение). Прочность и твердость не зависят от полосчатости.

Считалось, что применение контролируемой прокатки приводит к снижению производительности и к развитию текстурованного феррита, что способствует анизотропии свойств проката. Интенсивность такой анизотропии усиливается деформацией в феррито-аустенитной двухфазной области, таким образом, исключение этой операции могло привести к дальнейшему улучшению свойств.

При производстве стали 10Г2ФБ существует проблема получения минимального разброса свойств по длине полосы и нормируемого значения показателя ут/ув0,90. Большая однородность свойств обеспечивается, во-первых, стабильным фазовым составом стали в различных участках полосы и, во-вторых, одинаковой величиной дисперсионного упрочнения. Для получения однородного фазового состава металла температура окончания прокатки (Ткп) должна соответствовать нижней части аустенитной области на всех участках полосы. Перспективной можно считать структуру игольчатого феррита, обусловливающую высокую прочность вследствие увеличения количества дислокаций и формирования субструктуры, доля дисперсионного упрочнения при этом несколько снижена. Такая структура стати формируется при пониженных значениях Тсм, соответствующих бейнитной области ТКД (< 600 °С), когда выделяются мелкодисперсные карбонитриды, а возможности их роста ограниченны. Таким образом, получению равномерного уровня дисперсионного упрочнения по длине полосы способствует применение дифференцированной температуры смотки по длине полосы при обеспечении стабильного фазового состава, особенно в концевых участках полосы.

Наиболее эффективными средствами борьбы с анизотропией механических свойств на металлургическом заводе является совершенствование технологии производства стали и гомогенизация проката, обеспечение равномерного распределения карбонитридной фазы по длине проката для стали 10Г2ФБ.

Полосчатость Banding - Полосчатость .

Неоднородное распределение легирующих элементов или фаз, ориентированных в волокнах или плоскостях параллельных направлению обработки. См. также Banded structure - полосчатую структуру, ferrite-pearlite banding - полосчатый феррит-перлит, segregation banding - сегрегационная полосчатость .

(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)


Синонимы :

Смотреть что такое "Полосчатость" в других словарях:

    Сущ., кол во синонимов: 1 пестролепестность (5) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    полосчатость - Неоднородное распределение легирующих элементов или фаз, ориентированных в волокнах или плоскостях параллельных направлению обработки. Тематики металлургия в целом EN banding … Справочник технического переводчика

    полосчатость - Чередование в горных породах сравнительно тонких параллельных слоев, различающихся составом, цветом, структурой, ориентировкой зерен. Syn.: слоистость; ленточность … Словарь по географии

    Ж. отвлеч. сущ. по прил. полосчатый Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    Ferrite banding Ферритная полосчатость. Параллельные полосы свободного феррита, выстроенные в направлении обработки. Иногда называют ферритными полосками. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал,… … Словарь металлургических терминов

    Группа технологических процессов, в результате которых изменяется форма металлической заготовки без нарушения её сплошности за счёт относительного смещения отдельных её частей, т. е. путём пластической деформации (См. Деформация).… …

    Грубосланцеватая регионально метаморфическая порода. Это название применяется американскими петрографами к любым кристаллически зернистым породам с гнейсовой текстурой вне зависимости от их состава. Гнейсовая текстура может быть определена как… … Энциклопедия Кольера

    Сочетание ингредиентов и микрокомпонентов угля. Различают микро и макроструктуру. Макроструктура сочетание видимых простым глазом в вертикальном изломе разл. по величине, форме и вещественному Составу ингредиентов. По макроструктуре все угли… … Геологическая энциклопедия

    - (от греч. chalkedon) минерал, скрытокристаллическая разновидность Кварца. Содержит примеси Fe3+, Al3+, до 1 1,5% воды и др. Под микроскопом обнаруживает тонковолокнистое, часто радиально волокнистое строение; волокна микрокристаллов… … Большая советская энциклопедия

    Ориентировка склонов по отношению к странам света и к соответственно направленным в пространстве процессам, прежде всего господствующим ветрам. Склоны, открытые ветру, называются наветренными, находящиеся в ветровой тени подветренными.… … Большая советская энциклопедия

Книги

  • Структурная геология , А. К. Корсаков. В учебнике рассмотрены основные формы залегания осадочных, интрузивных, вулканических и метаморфических пород. Дана морфологическая характеристика образованныхими тел и элементы их…

Дефект «полосчатость» является одним из распространенных дефектов анодированных профилей из , например, сплавов 6060 и 6063 по международной и европейской классификации или сплава АД31 по отечественному ГОСТ 4784. По-английски этот дефект называют « streaking ». Обычно он проявляется уже после анодирования, что затрудняет выявление его причины. Сущность этого дефекта в том, что на поверхности профиля визуально видны узкие полосы с различным контрастом блеска или матовости как между ними самими, так и по сравнению с окружающей нормальной анодированной поверхностью. Пример этого дефекта анодирования представлен на рисунке.

Причины дефекта анодирования “полосчатость”

Известны, как минимум, три причины возникновения дефекта «полосчатость»:

  • Прессовые сварные швы

Металл из поверхностной зоны слитка

Первая причина – попадание в поверхность профиля металла поверхностной, так называемойсегрегационной зоны исходного слитка, обогащенногоинтерметаллидами и оксидами.

Прессовые сварные швы

Вторая причина – технологические, «прессовые» сварные швы профиля, продольные и поперечные. Поперечные швы возникают при обычной практике прессования заготовок «стык в стык», когда металл двух последовательных заготовок сваривается непосредственно в матрице и в него попадает металл поверхностного слоя из заднего конца предыдущей заготовки. Продольные швы возникают на полых профилях при соединении потоков металла после прохождения смежных портов матрицы. При стыковке двух заготовок материал загрязнения из заднего конца заготовки могут попадать и в продольные швы. Для устранения первых двух причин применяют: 1) более качественные слитки с минимальной толщиной сегрегационной зоны и 2) увеличенную толщину пресс-остатка.

Неправильная конструкция матрицы

Более сложной является третья причина, связанная с недостатками конструкции матрицы. В этом случае полосы возникают из-за сильных различий в пластической деформации или ее скорости в различных зонах сечения профилей со сложным или полым сечением. В результате возникают зоны металла с резко отличающимися характеристиками микроструктуры, такими как размер зерна, ориентация зерен, а также размер и количество выделений вторичных фаз. Кроме того, продольные швы также могут протравливаться неоднородно и быть видны даже и без участия загрязненного металла из поверхностного слоя. Это может быть опять же из-за неадекватной конструкции матрицы по размерам, форме или расположению сварочных камер.

Оптика дефекта анодирования “полосчатость”

Оптическая сущность полосчатостизаключается в том, что разные полосы имеют различную степень блеска или матовости. Блеск и матовость поверхности зависят от ее отражательных свойств, которые, в первую очередь, зависят от микротопографии поверхности. Эта топография определяется различными поверхностными несовершенствами, которые образуются в основном при травлении.

Часто поверхность дефектных полос имеет более грубую струкутуру, чем у нормальной поверхности и поэтому выглядит более матовой, так ее поверхностные несовершенства увеличивают диффузионную часть отраженного света. При оксидный слой образуется на поверхности исходного металла. Оптические свойства поверхности после анодирования в основном зависят от топографии поверхности исходного металла и мало зависит от самой оксидной пленки, потому что она является прозрачной.

Матовое щелочное травление алюминиевых профилей

Цель травления поверхности перед анодированием – получить гомогенную матовую поверхность. Травление меняет микроструктуру и оптические свойства поверхности за счет создания дополнительных поверхностных несовершенств: ямок травления, канавок границ зерен и ступенек травления зерен.

Роль железа в алюминиевом сплаве

Размер и распределение ямок травления зависит в основном от размеров и распределения в поверхностном слое интерметаллидных фаз: первичных частиц Al 3 Fe , α- AlFeSi и β- AlFeSi и вторичной фазы Mg 2 Si . Железосодержащие частицы имеют более высокий электрохимический потенциал, чем окружающий их алюминий, поэтому растворяются не они, а алюминий вокруг них. При достаточно длительном травлении эти частицы полностью выпадают и размер ямок часто больше, чем их исходный размер, иногда до 10 мкм в диаметре. Поэтому содержание железа в сплаве и оказывает значительное влияние на оптический вид поверхности после травления. Напротив, частицы Mg 2 Si действуют как аноды, что приводит к полному их вытравливанию с образованием ямок, повторяющих форму частиц. Поэтому малый размер частиц β- Mg 2 Si и их высокая плотность распределения дают значительный вклад в формирование матовой поверхности, в том, числе в ямках от первичных Fe -частиц. Такая высокая плотность мелких частиц Mg 2 Si достигается эффективной закалкой и искусственным старением профилей.

Роль границ зерен

Другим важным параметром микроструктуры поверхности, влияющим на ее оптические свойства, являются канавки границ зерен . Обычно границы зерен более восприимчивы к щелочному травлению. Однако, оказывается, что внутри на «полосчатой» поверхности канавки границ зерен еле видны, тогда как на нормальной поверхности – границы зерен глубокие и видны очень четко. Эту «смазанность» канавок границ зерен считают одной из причин, почему дефектные полосы выглядят светлее: мелкие канавки уменьшают долю диффузионной части отраженного света.

Ступеньки зерен

Еще одним элементом микроструктуры поверхности, влияющим на ее оптические свойства, являются так называемые ступеньки травления зерен. Дело в том, что при прессовании алюминиевых сплавов образуются некоторые предпочтительные ориентации зерен, то есть определенная текстура зерен. Установлено, что в дефектных полосах большинство зерен ориентировано в направлении прессования, а на нормальной поверхности зерна ориентированы случайным образом. Различие в текстуре дефектных и нормальных участковприводит к различной интенсивности отражения света.

Роль конструкции матрицы

Установлено, что описанные выше особенности поверхностной микроструктуры профилей возникают при прессовании сложных и, вдобавок, полых профилей, когда возникают сложные потоки металла с большими деформациями и скоростями деформаций. Именно это и приводит к возникновению неоднородной поверхностной микроструктуры поверхности профилей, которая является причиной дефекта «полосчатость».

Источник : X. Zhang et al, Aluminum Extrusion Technology Seminar, 2008.

Классификация дефектов деформированной стали. Неметаллические включения: оксиды, сульфиды, нитриды и т.д. Причины их возникновения, их влияние на структуру и свойства деформированного металла. Характерные отличия неметаллических включений. Макродефекты: трещины, расслоения, ликвация и др. Обезуглероженный слой в деформированной стали. Видмандштеттовая структура, пережог – причины их образования и возможность исправления дефектов. Деформационное старение. Процессы, происходящие при деформационном старении.

Дефекты деформированной стали можно классифицировать следу­ющим образом:

1. Неправильность профиля и общей формы.

2. Поверхностные дефекты.

3. Внутренние дефекты.

4. Несоответствие по механическим свойствам.

5. Дефекты микроструктуры.

6. Несоответствие различным специальным требованиям.

В настоящей главе рассмотрены поверхностные, внутренние де­фекты и дефекты микроструктуры. Причиной появления многих де­фектов служит несоблюдение технических условий горячей и холод­ной деформации стали.

Дефекты слитка могут проявляться в деформированной стали, изменяя свой вид в результате обработки давлением. Общим признаком дефектов сталеплавильного происхож­дения является ликвация, в частности фосфора и серы. Дефекты про­катного производства, как правило, не связаны со структурными изменениями, хотя иногда наблюдается частичное обезуглероживание с плавным переходом к основной структуре. Морфологические призна­ки у дефектов сталеплавильного и прокатного происхождения могут быть сходными, так как все дефекты вытянуты в направлении дефор­мации и часто имеют одинаковую форму в поперечном сечении. Воз­никновение дефектов прокатного происхождения не зависит от техно­логии сталеплавильного производства и марки стали, а связано глав­ным образом с нарушением режимов нагрева и деформации.

Некоторые дефекты деформированной стали являются общими для различных заготовок и изделий независимо от способа деформации (рис. 4.33).

Поверхностные дефекты. На поверхности заготовок, листов, про­волоки, труб, профилей, штампованных изделий наблюдаются раз­личные трещины (рис. 4.33, а): продольные, поперечные, извилистые, прерывистые и непрерывные. Причинами их образования служат раскатанные поры или подкорковые пузыри, большие остаточные напряжения в слитке или заготовке, напряжения, вызванные очень быстрым нагревом и охлаждением, а также неравномерностью дефор­мации. Форма трещин определяется их происхождением, а также способом деформации. Например, в листах и полосах они продольные или извилистые, в трубах - расположены в продольном направле­нии или по спирали.

Плены, вздутия, мелкие раковины на поверхности стальных из­делий получаются из-за внутренних дефектов литой стали, в част­ности из-за газовых пузырей, неметаллических включений. Эти дефекты носят локальный характер, но могут располагаться по всей поверхности. Закаты представляют собой смещения или завороты стали (рис. 4.33, б). Они могут появляться при закатывании усов, возникающих в случае переполнения предыдущего калибра или облоя на слитке.

К поверхностным дефектам стали относятся язвины, формирующие­ся при неравномерном травлении поверхности стали (рис. 4.33, в ), а также темные и светлые пятна и полосы. Анализ темных пятен по­казал, что вдоль направления деформации раскатана посторонняя фаза, выступающая над поверхностью стали (рис. 4.33, г). Это части­цы разрушенной футеровки нагревательных печей, вкатанные при прокатке в сталь. Появление светлых полос на поверхности стали обусловлено вскрытием сотовых пузырей при нагреве слитков перед деформацией и окислением их поверхности.

При нарушении технологии шлифовки деформирующего инстру­мента возможно появление участков с рифленой поверхностью, со­провождающееся образованием трещин и даже сквозных разрывов (рис. 4.33, д).

Деформированная сталь может иметь специфические дефекты, ха­рактерные для данного вида изделий. Например, рваная кромка на полосе (рис. 4.33, е) формируется при разрывах по кромкам из-за нарушения технологии прокатки или в результате потери пластич­ности стали в местах скопления оплавившихся в процессе деформации сульфидных включений.

Рисунок – Дефекты деформированной стали

К специфическим поверхностным дефектам штампованных изде­лий относятся складкообразование и заковы. Складкообразование представляет собой трещины, проходящие в местах перемены сече­ния и по внутренней поверхности кольцеобразных выступов. Оно может быть вызвано встречным движением стали в штампе, несовпа­дением форм исходной заготовки и полости штампа. Заковы - это складки, образующиеся на особо опасных местах изделий и направ­ленные по контуру штамповки. При холодной штамповке деталей простой и особенно сложной конфигурации из листового проката часто возникают разрывы. Им способствуют такие дефекты структуры холоднокатаной листовой стали, как неметаллические включения, разнозернистость, наличие крупных частиц цементита, неоднород­ность химического состава, а также наличие поверхностных или внут­ренних дефектов листов.

Внутренние дефекты. К распространенным внутренним дефектам деформированной стали относятся расслоение, флокены, трещи­ны. Расслоение представляет собой грубое нарушение сплошности (рис. 4.33, ж ). Причинами расслоений могут быть дефекты сталепла­вильного происхождения - остатки усадочной раковины, газовые пузыри, неметаллические включения.

Флокены - это разрывы круглой или эллиптической формы с бле­стящей поверхностью разрушения. Они формируются вследствие скопления в микрообластях водорода.

В центральной области стальных изделий могут образоваться многочисленные тонкие трещины по границам первичных зерен, вы­званные неравномерным прогревом, наличием ликвации легкоплавких элементов или карбидной ликвации. При деформации слитков сложнолегированных и высокоуглеродистых сталей, имеющих внутренние термические трещины, последние в процессе прокатки не завари­ваются, а наоборот, раскрываются, образуя полости, которые назы­вают «скворечниками».

В случае недостаточной пластичности стали и неблагоприятных температурно-скоростных условий при косой прокатке в центральной части трубной заготовки возникают напряжения, приводящие к так называемому «центральному» разрушению. Трещины появляются в местах структурной неоднородности (рис. 4.33, з). Для предотвраще­ния центрального разрушения при прокатке труб необходимо строго соблюдать температурно-скоростные условия деформации и опреде­ленный угол подачи. Это позволит получить равномерную субзеренную структуру стали.

В деформированных сталях иногда обнаруживают термические трещины, которые образуются под действием напряжений, возникаю­щих при быстром и неравномерном нагреве и резком или неравномер­ном охлаждении стали после деформации. При увеличении скорости охлаждения проката создается большая разность температур в центре и на поверхности изделия, что приводит к развитию значительных термических напряжений. В начале охлаждения поверхностные слои испытывают напряжения растяжения, а внутренние - сжатия. При дальнейшем охлаждении уменьшение объема средней части изделия сдерживается более остывшими наружными слоями. Поэтому первыми возникают наружные дефекты, а затем - внутренние. Особенно часто термические трещины образуются в высокоуглеродистых и высоколегированных труднодеформируемых сталях. Структурные напряжения появляются в результате неодновременных структурных и фазовых превращений, обусловленных разностью температур по длине и сечению прокатанного изделия.

Если напряжения при пластической деформации, а также терми­ческие и структурные напряжения совпадут по знаку, то суммарное напряжение может достичь значительной величины. В пластичной стали оно релаксирует путем микросдвигов, в малопластичной - при образовании трещин. Чем выше скорость охлаждения, тем больше вероятность появления трещин. В местах интенсивного охлаждения чаще всего формируются мелкие продольные трещины. Склонность к трещинообразованию возрастает в грубозернистой стали.

Дефекты микроструктуры деформированных и отожженных изде­лий могут образоваться при всех способах деформации. Поверхностное обезуглероживание происходит в результате взаимодействия углерода, содержащегося в стали, с кислородом или водородом окружающей среды. Обезуглероживание может быть следствием слишком длитель­ной выдержки стали при высоких температурах, попадания в печь обезуглероживающей газовой атмосферы, наличия окалины на по­верхности. Этот вид дефектов обнаруживается микроструктурно и хи­мическим анализом (рис. 4.34). В низкоуглеродистой стали с ферритной структурой в поверхностном слое при обезуглероживании растут зерна (рис. 4.34, а ), в сталях с более высоким содержанием углерода возникает ряд переходных структур (рис. 4.34, б ), что приводит к уменьшению прочности, твердости металла, снижает его сопротивле­ние деформации и износу. В некоторых случаях поверхностное обезугле­роживание полезно. Например, низкоуглеродистую холоднокатаную листовую сталь отжигают во влажном водороде для улучшения штам­пуемости, трансформаторную - в водороде или вакууме для повы­шения магнитных свойств.

Рисунок – Поверхностный обезуглероженный слой в листах из сталей 08кп и 65

Очень распространенным дефектом является полосчатая, или стро­чечная, структура деформированной стали. Существует несколько причин возникновения этого дефекта (рис. 4.35). При наличии в ли­той стали внутрикристаллической ликвации осевые участки дендритов содержат меньше углерода, кремния, фосфора, серы и других элементов по сравнению с междендритными участками. В процессе горячей прокатки дендриты аустенита, ранее располагавшиеся хаоти­чески или перпендикулярно к поверхности слитка, постепенно изме­няют свою ориентацию и переориентируются своими главными осями параллельно направлению прокатки. Структура стали становится во­локнистой. При охлаждении доэвтектоидной стали после горячей прокатки в интервале температур А Г3 - А Г1 происходит полиморфное превращение аустенита в феррит. Поскольку аустенит был неодно­роден по химическому составу, феррит появляется ранее в участках, обедненных углеродом, затем в участках аустенита, обогащенных углеродом, в результате эвтектоидного превращения образуется пер­лит. Структура стали после эвтектоидного превращения имеет резко выраженную полосчатость (рис. 4.35, а).

Полосчатость горячекатаной стали может быть обусловлена окон­чанием прокатки в межкритическом интервале температур. Если доэвтектоидную сталь прокатать в интервале температур А Гз - А Г1 , т. е. в двухфазном состоянии, в момент окончания деформации зерна аустенита и феррита будут вытянутыми. При охлаждении стали до температуры А г1 часть аустенита превращается в феррит, а после прохождения через точку А г1 оставшийся аустенит распадается на перлит. При этом вместо вытянутых зерен аустенита образуются фер­рит и перлит. Зерна избыточного феррита остаются вытянутыми. Полосчатая структура в доэвтектоидной стали может возникнуть из-за неметаллических включений, слу­жащих центрами зарождения избы­точного феррита (4.35, б).


Рисунок – Полосчатые структуры деформированной стали (х100)

Полосчатость доэвтектоидной стали уменьшается в результате длительного гомогенизирующего отжига при температуре 1250- 1300 °С, во время которого можно частично устранить ликвацию.

При горячей прокатке заэвтектоидной стали и легированных сталей карбидного и ледебуритного класса в интервале температур А ст - А г1 в процессе холодной прокатки может возникнуть карбид­ная полосчатость как результат дробления вторичного или эвтектоидного цементита и расположения его в строчки в направлении прокат­ки (рис. 4.35, в). Полосчатость такого типа называется карбидной неоднородностью. Основная причина ее образования - неравномерное распределение первичных и вторичных карбидов. Карбидная строчечность может быть уменьшена в результате спе­циального гомогенизирующего отжига при 1100-1300 °С, а также в процессе нагрева стали для горячей деформации. Карбидная неод­нородность значительно ухудшает прочность и вязкость стали.

В холоднокатаной стали также образуется волокнистая структура, что вызвано ориентировкой ферритных и перлит­ных зерен в направлении деформации. Сталь с полосчатой структурой обладает анизотропией механических свойств, причем поперек про­катки они значительно хуже, чем вдоль. На рис. 4.36 показано изме­нение значений ударной вязкости а н и относительного удлинения 5 в зависимости от угла наклона оси образца по отношению к направле­нию прокатки θ П. Для оценки качества стали испытываются попереч­ные образцы.

Структурный дефект - цементитная сетка образуется в заэвтектоидной стали при формировании вторичного цементита или карбида в виде грубых выделений на границах аустенитных зерен. Чем выше в стали содержание углерода и медленнее охлаждение, тем грубее цементитная сетка. Возникает этот де­фект в случае окончания горячей де­формации стали при температуре вы­ше А ст и слишком медленном охлаждении. Для предупреждения появле­ния цементитной сетки следует строго соблюдать температуру конца дефор­мации и, если сталь деформирована при температурах выше А ст , быстро охлаждать ее после деформации. Уст­ранить этот дефект можно путем по­вторного нагрева до температуры вы­ше А ст и ускоренного охлаждения.

Рисунок – Изменение механических свойств в зависимости от угла наклона образца по отношению к направлению прокатки.

Дефектом структуры деформиро­ванной стали является разнозерни-стость. Под ней понимают присут­ствие в структуре стали зерен раз­ных размеров, что приводит к неоднородности свойств. Следует различать Разнозернистость, связанную с ликвационными явлениями, т. е. с неоднородным распределением примесей, карбидных и карбонитридных включений, задерживающих рост зерен при горячей де­формации или отжиге, и обусловленную наследованием неоднород­ности литого состояния, неравномерностью распределения темпера­туры и деформации по толщине заготовки. В местах с очень мелкими зернами микротвердость стали повышается. Зоны с мелкозернистой структурой вытягиваются в направлении деформации.

Разнозернистость деформационного происхождения зависит от темпёратурно-скоростного режима деформации, величина зерен в стали и степень их размерной однородности определяются темпера­турами нагрева стали перед деформацией и окончания деформации, а также степенью деформации (суммарной и в последней клети, если прокатка осуществляется в несколько проходов).

Пластическая деформация всех видов неравномерна по сечению и вдоль оси деформируемого изделия. В очаге деформации возникают зоны, в которых степени деформации колеблются в довольно ши­роком интервале и могут быть ниже критических, критическими и выше критических. Такая неоднородность деформации стимули­рует рост зерен в процессе динамической и статической рекристалли­зации.

В структуре горячедеформированной стали могут наблюдаться зоны крупных слабодеформированных и нерекристаллизованных зе­рен, участки с рекристаллизованными зернами, претерпевшими пер­вичную, собирательную и даже вторичную рекристаллизацию, об­ласти с измельченными зернами. При последующей холодной дефор­мации сталь сохраняет эту неоднородность, которая усугубляется неравномерным развитием холодной деформации и проявляется при отжиге. В участках, претерпевших холодную деформацию со степе­нями выше критической, образуется нормальная зеренная структура; в зонах, где степень деформации соответствовала критической, вы­растают крупные зерна. В доэвтектоидной стали, прокатанной в интервале температур А Сз - А С1 , т. е. в двухфазной аустенитно-ферритной области, также проявляется разнозернистость структуры. Причиной ее является разная скорость динамической и статической рекристаллизации фер­рита и аустенита, причем ферритные зерна, более склонные к рекри­сталлизации, растут быстрее. Разнозернистость в деформированных сталях, как правило, имеет зональный характер. Она приводит к сни­жению прочностных и пластических свойств стали.

ЛИТЕРАТУРА

    Бельченко Г.И., Губенко С.И. «Основи металографии и пластической деформации»: М., Машиностроение, 1987г.

    Золотаревский B.C. «Механические свойства металлов», М.,Машиностроение, 1983г.

    Новиков И.И. «Дефекты кристаллического строения», М., Машиностроение,1975г.

Основной технологической схемой производства листового проката для электросварных труб большого диаметра является термомеханическая (контролируемая) прокатка непрерывнолитых слябов, во многих случаях с последующим регламентированным ускоренным охлаждением. Формирование структуры металла проходит в несколько стадий, основными из которых являются нагрев под прокатку, предварительная (черновая) стадия прокатки, окончательная (чистовая) стадия прокатки, последеформационное охлаждение. На конечную структуру также оказывают влияние процессы кристаллизации непрерывнолитой заготовки.
Проведенные исследования промышленного металла показывают, что формирующаяся структура металла характеризуется различными типами неоднородности, в их числе: разнозернистость; характер взаимного расположения структурных составляющих (полосчатость); неоднородность структуры по сечению проката (поверхностные слои, осевая зона), к неоднородности можно отнести и формирование смеси различных фаз и структурных составляющих (рис. 3.44); кристаллографическая текстура в феррите и др.

К источникам формирования неоднородных структур в прокате можно отнести:
- неоднородность химического состава исходной заготовки (ликвация дендритная, осевая);
- влияние процесса горячей деформации (температурный интервал, неравномерность деформации по сечению проката);
- влияние процесса охлаждения (в первую очередь, ускоренного), обусловливающего неравномерность температуры металла по сечению (особенно с учетом больших толщин проката и повышенной скорости охлаждения), а также и его неравномерность;
- особенности (γ-α)-превращения (неодновременность превращения в участках металла с различным химическим составом, протекание процесса при непрерывном охлаждении).
Основные типы неоднородных структур в трубных сталях можно классифицировать следующим образом:
1) связанные с природой процессов:
- полосчатая структура, включая осевую зону сляба;
- неоднородность по сечению проката (поверхностные слои и сердцевина);
- смесь различных типов структур при непрерывном охлаждении;
2) связанные с неправильно выбранными технологическими параметрами:
- разнозернистость (аустенита, феррита) → локальное изменение типа структуры (бейнит, полосы грубого высокотемпературного феррита);
- локальная неоднородность в объеме проката (в том числе по длине);
3) целенаправленно создаваемые неоднородные структуры:
- феррит + перлит;
- полиэдрический и деформированный феррит (текстуриро-ванный) + перлит;
- деформированный феррит + бейнит;
- другие сочетания.
Самая распространенная структура горячекатаных и нормализованных сталей - ферритно-перлитная смесь, в большинстве случаев характеризуемая неравномерным расположением структурных составляющих - полосчатостью. Механизм формирования полосчатой структуры представляется следующим. В процессе затвердевания ликвирующие элементы (марганец, фосфор) вытесняются из первых сформировавшихся дендритов 5-феррита, что приводит к формированию междендритных зон, обогащенных этими элементами. Впоследствии эти области будут характеризоваться оладьеобразной формой зерен после горячей прокатки и станут основой микрохимической и микроструктурной полосчатости. Аналогичный механизм приводит к осевой химической неоднородности в непрерывнолитом слябе.
Микроструктурная полосчатость, состоящая из чередующихся слоев доэвтектоидного феррита и перлита (или бейнита/мартенсита), есть результат влияния элементов замещения на температуру превращения аустенита.
Так как эта температура понижается при повышении содержания элементов, входящих в твердый раствор, феррит в первую очередь зарождается в обедненных легирующими элементами зонах. Углерод вытесняется из доэвтектоидного феррита, образуя обогащенные углеродом области аустенита, который превращается в перлит или другие составляющие - высокоуглеродистый мартен-сит/бейнит. Зерна доэвтектоидного феррита и островки второй структурной составляющей связаны с обедненными и обогащенными областями соответственно.
Разнозернистость аустенита может формироваться вследствие ряда причин:
- малые деформации за проход и получение более крупного зерна в средней части проката при деформации выше Трекр;
- условия деформации (температура, степень и другие параметры), приводящие к частичной рекристаллизации;
- деформация аустенита ниже Трекр (крупное и разноразмерное исходное зерно аустенита и/или недостаточное суммарное обжатие) - получение аустенитных зерен с различной плотностью несовершенств (полос деформации), являющихся местами зарождения феррита - неравномерное зарождение феррита.
Разнозернистость аустенита может привести к разнозернистости феррита либо формированию грубых областей верхнего бейнита вместо ферритно-перлитной структуры или структуры гранулярного бейнита вследствие повышения устойчивости крупнозернистого аустенита.
Одна из технологических схем производства проката для электросварных труб большого диаметра - прокатка с завершением деформации в (γ+α)-области. При деформации в (γ+α)-области в феррите наблюдаются зерна полигонального типа с низкой плотностью дислокаций, а также деформированные зерна с повышенной плотностью дислокаций, в которых наблюдается формирование субзеренной структуры (полигонизация). Такой металл имеет своеобразный характер разрушения - в изломах ударных образцов наблюдаются «расщепления» - трещины небольшой глубины, расположенные перпендикулярно магистральной трещине и лежащие в плоскости прокатки. При прокатке с завершением в γ-области в феррите формируется многокомпонентная текстура; с понижением температуры окончания прокатки в (γ+α)-области в наибольшей степени усиливается ориентировка {100}, что и является основной причиной возникновения расщеплений, поскольку плоскость типа {100} является плоскостью скола в металлах с ОЦК-решеткой.
При такой технологической схеме прокатки в стали формируется полосчатая ферритно-перлитная структура, при этом наблюдаются ферритные зерна двух видов: деформированные и равноосные с низкой плотностью дислокаций. Сталь после такой обработки характеризуется повышенной прочностью и хладостойкостью, при этом также повышается анизотропия свойств. Металл характеризуется низкой стойкостью к сероводородному растрескиванию.
В современных высокопрочных низколегированных сталях после термомеханической прокатки и последующего охлаждения в различных температурных интервалах обычно формируется смесь разнообразных фаз и структурных составляющих: полигональный феррит, квазиполигональный феррит, бейнитный феррит различных типов, мартенсит или составляющая М/А. Влияние второй фазы (структурной составляющей) на свойства сплава зависит от ее объемной доли, размера частиц, свойств и ряда других факторов. Так, при малой доле более твердой фазы основная деформация (особенно при малых степенях деформации) протекает в мягкой матрице, хотя в некоторой степени процесс происходит и вокруг участков второй фазы. В связи с этим вторая фаза в виде относительно крупных частиц оказывает меньшее влияние на сопротивление малым деформациям.
Для повышения однородности структуры по сечению проката можно использовать воздействие на вид диаграммы превращения при непрерывном охлаждении (применении оптимальной системы легирования стали): расширение области бейнитного превращения, что приводит к формированию более однородной структуры в широком интервале скоростей охлаждения и повышению равномерности структуры по сечению проката.
При низких температурах конца прокатки по толщине листа наблюдается заметное изменение структуры. Оно носит сложный характер и включает изменение размера зерна, количества структурных составляющих и текстуры. Поэтому некоторые локальные значения свойств, таких как критическое напряжение скола, трудно связать с одним структурным параметром, например размером зерна. Более того, неоднородная структура по толщине листа может приводить к появлению значительных остаточных напряжений, что усложняет поведение металла при последующем деформировании (и эксплуатации).
Неоднородное распределение свойств по толщине проката должно приниматься во внимание при производстве труб. Более высокие остаточные напряжения и более существенное снижение прочностных свойств (по сравнению с листом с однородной структурой) были обнаружены в листе с неоднородной структурой и свойствами. Допустимая неоднородность структуры по сечению проката зависит от исходной структуры аустенита - свойств бейнита; содержания углерода - типа бейнита; требований и назначения проката. В целом степень неоднородности обычно регулируется путем ограничения скорости охлаждения и снижения углеродного эквивалента материала.
Структура по сечению проката может быть неоднородной вследствие пониженной прокаливаемости низколегированных сталей. В работах развивается идея создания «конструктивной анизотропии». В них обоснованы целесообразность формирования в сечении проката градиента структур - от закалочных (у поверхности) до продуктов диффузионного распада аустенита (в средней части сечения проката), а также преимущество комплекса механических свойств проката с такой структурной неоднородностью по сравнению со структурной неоднородностью в горячекатаном состоянии.

При изменении соотношения структурных составляющих изменяются вид диаграммы напряжение-деформация (рис. 3.45), коэффициент деформационного упрочнения, проявление эффекта Баушингера, прочностные свойства, вязкость.
Рассмотрение взаимосвязи неоднородности структуры со свойствами позволяет сделать ряд заключений:
- полосчатость - наиболее распространенная неоднородность структуры с точки зрения свойств приводит к анизотропии, пониженной стойкости к сероводородному растрескиванию;
- осевая ликвационная неоднородность - обусловливает пониженную стойкость к сероводородному растрескиванию, ухудшение свариваемости, снижение свойств в Z-направлении;
- неоднородность структуры по сечению - приводит к остаточным напряжениям;
- при смешанной структуре изменяется тип диаграммы напряжение-деформация, наблюдается отклонение от заданного комплекса свойств;
- разнозернистость - приводит к ухудшению хладостойкости;
- текстура обусловливает особый характер разрушения, повышение хладостойкости, увеличение анизотропии свойств.
Механизмы устранения неоднородности структуры:
- полосчатость структуры - повышение скорости охлаждения снижает полосчатость; при завершении деформации в (γ+α)-области и последующем ускоренном охлаждении происходит замена перлита на бейнит с сохранением полосчатости;
- осевая ликвационная неоднородность уменьшается при снижении содержания углерода, марганца и с помощью технологических приемов (мягкое обжатие и др.);
- неоднородность структуры по сечению (смешанная структура) устраняется путем воздействия на фазовые превращения;
- разнозернистость уменьшается при правильном выборе режима деформации;
- кристаллографическая текстура определяется режимом прокатки.
Какую же структуру трубной стали считать оптимальной? Это зависит от требований, которые очень сложны и часто противоречивы: прочность, вязкость, хладостойкость, свариваемость, трещиностойкость, деформируемость (сейсмические районы, вечная мерзлота), стойкость в среде H2S и других с учетом класса прочности и размерного сортамента.
Приведем примеры, как целенаправленного формирования неоднородных структур, так и попытки повышения однородности структуры.
Формирование и эффект неоднородных структур:
- перлит в ферритной матрице (повышение σв, снижение соотношения σт/σв);
- деформированный и полигонизованный феррит с выраженной кристаллографической текстурой (деформация в (γ+α)-области) - повышение хладостойкости за счет особого характера разрушения с формированием расщеплений в изломе, повышение прочностных свойств; расположение структурных составляющих в виде полос;
- двухфазная ферритно-бейнитная (мартенситная) структура для улучшения деформируемости (снижение σт/σв, повышение деформационного упрочнения, высокое равномерное удлинение);
- феррит деформированный, расположение структурных составляющих в виде полос.
Устранение неоднородности структуры и результат этого:
- снижение осевой сегрегационной неоднородности - улучшение сплошности проката (по результатам УЗ-контроля), свариваемости, стойкости в среде сероводорода, снижение анизотропии свойств;
- устранение полосчатости - стойкость в среде сероводорода, вязкость, трещиностойкость, снижение анизотропии свойств;
- устранение участков М/А - повышение вязкости, трещиностойкости, стойкости в среде сероводорода (рис. 3.46, а);
- устранение грубых участков верхнего бейнита (формирование однородной структуры гранулярного бейнита) - получение высокой прочности и вязкости (см. рис. 3.46, в);
- формирование однородной структуры нижнего бейнита: получение сверхвысокой прочности стали (Х120) и вязкости (см. рис. 3.46, г);
- общее повышение однородности структуры - улучшение трещиностойкости и сопротивления коррозионному растрескиванию под напряжением.

25.11.2019

Пиломатериалы – изделия, которые получают из бревен путем их продольного распиливания. Части, которые получены на первом этапе производства, далее при необходимости...

25.11.2019

Каждому современному человеку рано или поздно приходится решать, куда поставить компьютерный стол. Оцениваем свободное место в квартире и вперед – подбирать модель,...

25.11.2019

Вопрос, где в квартире расположить ковры, не менее важен, чем умение правильно выбрать ковер. Как это сделать расскажет данная статья....

25.11.2019

В каждой отрасли, где происходит производство жидкой или вязкой продукции: в фармацевтическом деле, в косметической отрасли, в пищевом и химическом секторах – везде...

Похожие публикации