Лабораторная работа_3_Почв. Методика проведения исследований Гумус определение гост

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Определение органического вещества почвы методом И.В. Тюрина в модификации Цинао

Введение

1. Почва, ее строение и виды

5. Практическая часть

Заключение

Введение

Органическим веществом почвы называют всю совокупность органических соединений, присутствующих в почвах. Среди соединений углерода они играют наибольшую роль в почвообразовании и плодородии почв.

Роль органических соединений настолько велика, что проблема органического вещества почв всегда занимала одно из центральных мест в теоретическом и прикладном почвоведении.

В формировании почв и почвенного плодородия гумус выполняет многочисленные функции. Оптимальное содержание гумуса в почве обеспечивает агрономически ценную структуру и благоприятный водно-воздушный режим, улучшает прогреваемость почв. С гумусом связаны важнейшие физико-химические показатели почв, в том числе высокая емкость катионного обмена, кислотно-основная буферность почв; от качества и уровня содержания гумуса зависят кислотность и развитие восстановительных процессов. Поэтому в настоящее время количественный анализ гумуса в различных породах почв и оценка запасов почвенного органического углерода является важнейшим аспектом для регулирования гумусного состава используемых в сельскохозяйственном производстве почв.

Одним из количественных методов определения органического вещества в почвах является фотометрический метод И.В. Тюрина, который является в настоящее время основным методом и принятым во всех лабораториях. Поэтому целью нашей работы является определение количества органического вещества по методу Тюрина в модификации Цинао

1. Почва, ее строение и виды

Почва -- поверхностный слой Земли, обладающий плодородием. Почва является полифункциональной четырёхфазной системой, образовавшейся в результате выветривания горных пород и жизнедеятельности организмов. Её рассматривают как особую природную мембрану, регулирующую взаимодействие между биосферой, гидросферой и атмосферой Земли. Формируется под влиянием климата, рельефа, исходной почвообразующей породы, а также живых организмов и меняется со временем. Почва - это смесь твердых частиц, воздуха и воды.

Твердые частицы почвы это:

а) минеральные частицы больших размеров, начиная от камней значительной величины до весьма мелких песчинок. При введении большого количества воды эти составные части быстро осаждаются на дне сосуда.

б) чрезвычайно мелкие, пылеобразные частицы, которые долго могут оставаться взвешенными в воде. Они легко отделяются от песка путем отмачивания.

в) гумусовые вещества, которые образовались при распаде мертвых органических тел или продуктов жизнедеятельности организмов. В его образовании главную роль играют микроорганизмы (бактерии, грибы, монеры и др.) и дождевые черви. Многие гумусовые вещества несут в себе явственные следы своего органического происхождения и придают почве по большей части черную или бурую окраску.

Эти три составные части содержаться почти во всех видах почв.

Часть почвы, не проходящей через сетку с отверстиями в 0,3 мм. Называется скелетом почвы (грубый песок, гравий, камни).остальные частицы называются мелкоземом. Мелкозем играет главную роль в жизни растений. Примесь камней и гравия в значительной степени изменяет физические свойства почвы.

Объем пор. Смешение этих составных частей почвы, их относительные количественные отношения и способ их сложения бывают в разных видах почв весьма различны. Частицы почвы оставляют между собой небольшие пустые пространства (поры). Сумма таких не выполненных твердыми частицами пространств называется поровым объемом данной почвы. Почва весьма богата такими пустыми, соединенными друг с другом пространствами, превращающимися в капилляры, по мере того как суживается их просвет. Это имеет огромное значение для растительности. Связность почвы. Сила сцепления частиц почвы между собой бывает весьма различна. В виде примера приведем такие крайности как дюны, песчинки которых в сухом виде совсем не связаны друг с другом, и такие как глинистая почва. Чернозем также обладает незначительной связностью. Волосность почвы играет весьма важную роль в ее физическом строении. Она находится главным образом в зависимости от величины и способа залегания слагающих ее частиц; волосность тем больше, чем меньше зерна и чем чаще они расположены; комковатая почва обладает меньшей капиллярностью, чем почва сложенная из отдельных зерен. Камни и гравий в почве также уменьшают ее волосность.

На основании различного состава почвы, можно установить следующие ее виды: каменистая, песчанистая, известковая, солончаковая, глинистая, гумусовая почвы. Виды эти связываются друг с другом постепенными переходами и бесчисленными промежуточными членами так, что, существует бесчисленное множество видов почв, обладающих самыми разнообразными свойствами.

1) Каменистая почва. Решающее значение того, какие растения будут расти на такой почве, имеет природа горной породы. Главное значение имеют тут отличия в твердости, пористости, теплоемкости и теплопроводности. Главные горные породы: гранить, гнейс, известняк, доломить, песчаник, глинистый сланец, базальт и пр.

2) Песчаная почва. Песок состоит из различных минералов, преимущественно кварца, а также роговой обманки, полевого шпата, слюды, иногда извести. Песчаная почва принадлежит к рыхлым почвам, т. к. слагающие ее зерна обладают малой связностью, тем меньшей, чем больше песчинки.

3) Известковая почва. Известковый песок из зерен углекислой извести содержит больше питательных веществ, чем кварцевый песок. Он обладает несколько большей водоемкостью и менее легко высыхает, но и принадлежит еще к сухим и теплым почвам. Мергель это весьма тесное соединение углекислой извести (около 8-45%, в известковом мергеле около 75%) с глиной (около 8-60%) и кварцевым песком. Свойства его находятся в зависимости от количественных отношений его составных частей и занимают среднее место между свойствами песка и глины.

4)Солончаковая почва - почва, характеризующаяся наличием в верхних горизонтах легкорастворимых солей в количествах, препятствующих развитию большинства растений, за исключением галофитов, которые также не образуют сомкнутого растительного покрова. Формируются в аридных или полуаридных условиях при выпотном водном режиме, характерны для почвенного покрова степей, полупустынь и пустынь.

Профиль солончаков обычно слабодифференцированный. С поверхности залегает солончаковый (солевой) горизонт, содержащий от 1 до 15% легкорастворимых солей (по данным водной вытяжки). При высыхании на поверхности почвы появляются солевые выцветы и корки. Вторичные солончаки, образующиеся при подъёме минерализованных грунтовых вод в результате искусственного изменения водного режима (чаще всего из-за неправильного орошения), могут иметь любой профиль, на который накладывается солончаковый горизонт.

5) Глинистая почва составляет почти противоположность песку. Глинистая почва отличается большой поглотительной способностью и гигроскопичностью (может поглощать из воздуха 5-6% водяных паров). Это плотная и тяжелая почва, т. к. частицы обладают большой связностью. Она трудно проветривается; обстоятельство это неблагоприятно для растений и ведет к образованию кислот и заболачиванию почвы. Глинистая почва холодна и влажна, так как она отличается большой водоемкостью (до 90%) и капиллярностью; она всасывает из подпочвы много воды и почти водонепроницаема. В случае пересыщения водой она взбухает, отдельные, слагающие ее частицы раздвигаются, причем получается кашеобразная масса. Богатая водой глинистая почва пластична. Под влиянием продолжительной засухи она делается твердой как камень, сжимается и трескается, что оказывает влияние на растительность. Неблагоприятные свойства глинистых почв можно устранить, примешивая к ним вещества, обладающие противоположными свойствами, например песок или известь.

почва углерод химический органический

2. Особенности почвы как объекта химического исследования и показатели химического состояния почв

Почву можно рассматривать как сложную химическую систему, изучение свойств которой проводят на разных уровнях. Почву изучают как природное образование, состоящее из атомов различных химических элементов, и в процессе исследования определяют их содержание. Это атомный или элементный уровень изучения состава почв. В то же время почвоведы ставят перед собой более сложные задачи и изучают состав почв на более высоких уровнях (молекулярном, ионном и др.).

Почва - сложный объект исследования. Сложность исследования химического состояния почв обусловлена особенностями их химических свойств и связана, с необходимостью получения информации, адекватно отражающей свойства нативных почв и обеспечивающей наиболее рациональное решение, как теоретических вопросов почвоведения, так и вопросов практического использования почв. Для количественного описания химического состояния почв используют широкий набор показателей. В него входят показатели, определяемые при анализе практически любых объектов и разработанные специально для исследования почв. Показателями химического состояния почв являются, например, массовая доля гумуса в почве, рН водной или солевой почвенных суспензий, массовая доля подвижных соединений химических элементов в почве и многие другие.

Набор и соподчиненность показателей химического состояния почв обусловлены особенностями почвы как химической системы и как объекта практического использования. Особенностями почвы как химической системы является гетерогенность, полихимизм, дисперсность, неоднородность, изменение и динамика свойств, буферность и др.

Полихимизм почв. В почвах один и тот же химический элемент может входить в состав разнообразных соединений: легкорастворимых солей, сложных алюмосиликатов, органоминеральных веществ. Эти компоненты обладают разными свойствами, от которых, в частности, зависит способность химического элемента переходить из твердых фаз почвы в жидкую, мигрировать в профиле почвы и в ландшафте, потребляться растениями и т.п. Поэтому в химическом анализе почв определяют не только общее содержание химических элементов, но и показатели, характеризующие состав и содержание индивидуальных химических соединений или групп соединений, обладающих близкими свойствами. Эти показатели позволяют диагностировать почвенные процессы, исследовать трансформацию химического элемента в процессе почвообразования, при внесении удобрений и техногенном загрязнении, оценивать плодородие и мелиоративные особенности почв.

Гетерогенность почв. В составе почвы выделяют твердую, жидкую, газовую фазы. К.К. Гедройц еще в 1906 г. писал, что для определения состояния почвенной системы необходимо изучать ее твердые фазы и приступить к систематическому изучению жидкой фазы в зависимости, в частности, от парциального давления СО 2 в почвенном воздухе. В настоящее время при исследовании химического состояния почвы и отдельных ее компонентов определяют показатели, характеризующие не только почву в целом, но и ее отдельные фазы. Более того, разработаны математические модели, позволяющие, например, оценить взаимосвязь уровней парциального давления диоксида углерода в почвенном воздухе, рН, карбонатной щелочности и концентрации кальция в почвенном растворе.

Полидисперсность почв. Твердые фазы почвы состоят из частиц разного размера от крупинок песка до коллоидных частиц диаметром в несколько микрометров. Они неодинаковы по составу и обладают разными свойствами. При специальных исследованиях генезиса почв определяют показатели химического состава и других свойств отдельных гранулометрических фракций. С дисперсностью почв в какой-то мере связана их способность к ионному обмену, которая в свою очередь характеризуется специфическим набором показателей -- емкостью катионного и анионного обмена, составом обменных катионов и пр. От уровней этих показателей зависят многие химические и физические свойства почв.

Кислотно-основные и окислительно-восстановительные свойства почв. В состав почв входят компоненты, проявляющие свойства кислот и оснований, окислителей и восстановителей. При решении разнообразных теоретических и прикладных проблем почвоведения, агрохимии, мелиорации определяют показатели, характеризующие кислотность и щелочность почв, их окислительно-восстановительное состояние.

Неоднородность, вариабельность, динамика, буферность химических свойств почв. Свойства почв неодинаковы даже в пределах одного и того же генетического горизонта. При исследовании процессов формирования почвенного профиля оценивают химические свойства отдельных элементов организации почвенной массы.

Свойства почв варьируют в пространстве, изменяются во времени и в то же время почвы обладают способностью противостоять изменению своих свойств, т. е. проявляют буферность. Разработаны показатели и способы характеристики вариабельности, динамики, буферности свойств почв.

Изменение свойств почв. В почвах непрерывно протекают разнообразные процессы, которые приводят к изменению химических свойств почв. Практическое применение находят показатели, характеризующие направление, степень выраженности, скорости протекающих в почвах процессов; исследуются динамика изменения свойств почв и их режимы. Могут изменяться химические свойства даже изолированных почвенных проб при их высушивании, растирании, просто при хранении.

Разнокачественностъ состава почв. Разные типы и даже виды и разновидности почв могут иметь столь разные свойства, что для их химической характеристики используют не только разные аналитические приемы, но и разные наборы показателей. Например, в подзолистых, дерново-подзолистых, серых лесных почвах, как правило, определяют рН водных и солевых суспензий, обменную и гидролитическую кислотность, обменные основания вытесняют из почв водными растворами солей. В то же время при анализе засоленных почв определяют рН только водных суспензий, а вместо показателей кислотности -- общую, карбонатную и другие виды щелочности. Обменные основания в засоленных почвах невозможно определить простым вытеснением их из почвы водными растворами солей без использования специальных аналитических приемов.

Перечисленные особенности почв во многом обусловливают принципиальные основы методов исследования химического состояния почв, номенклатуру и классификацию показателей химических свойств почв и химических почвенных процессов.

3. Химические и инструментальные методы анализа почв

В химическом анализе почв может быть использован практически любой из методов, которыми располагают аналитики. При этом измеряется либо непосредственно искомая величина показателя, либо величина, функционально с ней связанная. Например, концентрация солей в жидких фазах насыщенных водой почвенных паст и степень засоления почв могут быть оценены по величине удельной электрической проводимости фильтратов из паст. Этот прием используют потому, что легче определить удельную электрическую проводимость раствора, чем концентрацию в молях.

В лабораторной практике анализа почв используют классические химические и инструментальные методы. С помощью классических химических методов можно получить наиболее точные результаты. Относительная погрешность определения составляет 0,1--0,2%. Погрешность большинства инструментальных методов значительно выше -- 2-5%. При анализе почв погрешности могут быть выше указанных. Классические химические методы в настоящее время за редким исключением применяют главным образом для оценки правильности результатов определений, получаемых инструментальными методами.

Среди инструментальных методов в анализе почв наиболее широко используются электрохимические и спектроскопические. Среди электрохимических методов находят применение потенциометрические, кондуктометрические, кулонометрические и вольтамперометрические, включающие все современные разновидности полярографии.

Среди спектроскопических методов по характеру взаимодействия излучения с веществом выделяют спектроскопию испускания (эмиссионную), поглощения (абсорбционную), рассеяния и отражения. Кроме того, спектроскопию подразделяют на атомную и молекулярную. В анализе почв используют как методы атомной, так и молекулярной спектроскопии.

При выборе метода измерения учитываются особенности химических свойств анализируемой почвы, природа показателя, необходимая точность определения его уровня, возможности методов измерения и выполнимость требуемых измерений в условиях проведения эксперимента. В свою очередь, точность измерений обусловливается целью исследования и природной вариабельностью изучаемого свойства. Точность - собирательная характеристика метода, оценивающая правильность и воспроизводимость получаемых результатов анализа. Необходимо учитывать, что более точные методы, как правило, и более трудоемки. Несмотря на то, что классические химические методы во многих случаях уступают место более производительным инструментальным, необходимо иметь в виду, что эти методы, особенно гравиметрические, являются наиболее точными. Поэтому, несмотря на свою трудоемкость, они безусловно будут использоваться в качестве стандартных арбитражных методов при разработке новых (в том числе инструментальных) методов анализов почв и создании стандартных с известным (заданным) содержанием химических элементов образцов почвенных масс. Стандартные образцы почвенных масс используют как при контроле правильности получаемых результатов анализа, так и для калибровки приборов.

4. Углерод в почвах и методы определения углерода органических соединений

Углерод в почвах входит в состав как органических, так и неорганических соединений. Углерод, входящий в состав органического вещества, находится в специфических, свойственных только почвам, соединениях -- гуминовых кислотах, фульвокислотах, гиматомелановых кислотах, гумине -- и в неспецифических соединениях -- лигнине, аминокислотах, углеводах, жирных кислотах, спиртах, альдегидах, смолах, восках и пр. Минеральные соединения углерода представлены карбонатами, основная часть которых приходится на относительно труднорастворимые карбонаты кальция и магния. Незначительное количество углерода находится в форме легкорастворимых карбонатов и гидрокарбонатов щелочей. В газовых фазах почв углерод представлен СО 2 , СН 4 и др.

Трудности проведения анализа почв на содержание в них углерода при прочих равных условиях связаны с необходимостью раздельного определения углерода органических и минеральных соединений.

Все методы определения углерода органических соединений основаны на его окислении до диоксида углерода. Предложены как прямые, так и косвенные методы анализа. Прямые методы основаны на определении количества СО 2 , образующегося при окислении углерода органических соединений; косвенные методы -- на определении количества окислителя, пошедшего на перевод углерода органических соединений в СО 2 , или на определении количества восстановленной формы используемого окислителя, образовавшейся в процессе анализа.

4.1 Методы, основанные на отгонке диоксида углерода

С помощью этих методов содержание углерода находят по количеству СО 2 , выделившегося при разложении органического вещества почв. В процессе анализа количество диоксида углерода определяют разнообразными прямыми или косвенными методами. Для этой цели используют гравиметрические, титриметрические, газоволюмометрические, кулонометрические и другие методы количественного анализа.

Разложение органического вещества до Н 2 О и СО 2 может быть проведено двумя способами: методом сухого озоления при нагревании почв и методом мокрого озоления растворами сильных окислителей.

Гравиметрические методы. При определении углерода органических соединений гравиметрическим методом применяют как сухое, так и мокрое озоление гумуса.

Почвоведы исследовали процессы, происходящие при нагревании гуминовых кислот. Было установлено, что вначале происходит разрушение алифатической части молекулы гуминовой кислоты, т.е. ее периферических или боковых цепей. Затем, при более высоких температурах, начинается разрушение ароматического ядра, дегидрирование и, наконец, выделение углерода в виде СО 2 . На стадии, предшествующей выделению СО 2 , остаток гуминовой кислоты на 80--90% состоит из углерода. Температура, при которой происходят те или иные процессы, варьирует в зависимости от условий эксперимента -- скорости нагревания, окислительных условий, возможности удаления продуктов распада и т.п.

На сухом озолении органического вещества почв при температуре 650--750° основан метод Густавсона. При нагревании почвы органические вещества разлагаются, а входящие в их состав углерод и водород превращаются в диоксид углерода и воду. Озоление почв проводят в тугоплавкой трубке, через которую непрерывно пропускают кислород или воздух, лишенный СО 2 . Для более полного разложения гумуса озоление проводят в присутствии оксида меди. Оксид меди отдает кислород и, превращаясь сначала в Сu 2 О, а затем в металлическую медь, способствует более полному окислению компонентов органического вещества почв.

Летучие компоненты почв и продукты окисления гумуса улавливают специальными поглотителями. Для поглощения воды, образующейся при окислении водорода, используют хлорид кальция или концентрированную серную кислоту, для поглощения диоксида серы -- хромат свинца. Медную спираль применяют для восстановления азота оксидов до свободного азота, галогены поглощают с помощью серебряной спирали. Наконец, для поглощения СО 2 используют аскарит (асбест, пропитанный NaOH). Аскарит помещают в U-образные поглотительные трубки. Реакция протекает согласно уравнению:

СО 2 + 2NaOH = Na 2 CO 3 + Н 2 О

В связи с тем, что одним из продуктов реакции является Н 2 О, в поглотительную трубку помещают не только аскарит, но и хлорид кальция, который количественно поглощает воду:

СаС1 2 + nН 2 О = СаС1 2 nН 2 О

Поглотительные трубки взвешивают до и после озоления органического вещества и по увеличению массы, обусловленному поглощением СО 2 , находят содержание углерода в почве.

Методы, основанные на сухом озолении и гравиметрическом определении диоксида углерода, -- наиболее точные из методов определения углерода органических соединении. При сухом озолении происходит полное окисление углерода независимо от типа органических соединений, а гравиметрический метод -- наиболее точный из методов измерения массы СО 2 . Однако эти методы трудоемки и, кроме того, не могут быть использованы при анализе карбонатных почв без специальных приемов. При нагревании почв, содержащих карбонаты, возможно разложение последних, поэтому при анализе карбонатных почв масса поглотительных трубок может увеличиться не только в результате поглощения диоксида углерода, образующегося при разложении органического вещества, но и от СО 2 , образующегося в результате разложения карбонатов.

Газоволюмометрические методы основаны на измерении объема диоксида углерода, выделившегося при озолении гумуса, и вычислении количества углерода по объему СО 2 . Вычисления проводят с учетом температуры и давления, при которых проводился анализ. Газоволюмометрическое определение углерода в почвах может быть проведено с помощью газоанализаторов, в том числе предназначенных для определения углерода в чугуне и стали. Озоление анализируемого вещества проводят в термостойкой трубке в муфельной печи в токе кислорода. В процессе ана¬лиза измеряют объем смеси СО 2 и кислорода. Затем смесь газов пропускают через раствор с поглотителем диоксида углерода (СО 2 + 2КОН = К 2 СО 3 + Н 2 О) и измеряют объем кислорода. Объем диоксида углерода, образовавшегося в результате озоления органического вещества, вычисляют по разности.

Титриметрические методы также используются для определения диоксида углерода, выделяющегося при озолении гумуса. В этом случае диоксид углерода поглощают раствором КОН. В щелочной среде диоксид углерода трансформируется в COf"". Ион СО осаждают хлоридом бария в виде ВаСО3. Осадок карбоната бария отфильтровывают, промывают водой и растворяют в титрованном растворе НС1, избыток которой определяют титрованием щелочью. По количеству НС1, пошедшему на растворение карбоната бария, судят о количестве диоксида углерода, образовавшегося при озолении гумуса.

Экспресс-методы. В последние десятилетия для определения углерода органических соединений используют анализаторы, позволяющие получить результат в течение нескольких минут.

Один из методов основан на оценке скорости выделения СО 2 . Метод разработан специально для анализа почв и позволяет раздельно оценивать диоксид углерода, выделившийся при разложении органических соединений и при разложении карбонатов.

По мере нагревания навески почвы в токе кислорода до 700° растет скорость выделения СО 2 вследствие окисления углерода. органических соединений, достигает максимума и затем уменьшается. Скорость разложения карбонатов начинает увеличиваться при более высокой температуре. Анализатор автоматически регистрирует кривую скорости выделения диоксида углерода по мере нагревания почвы и позволяет раздельно определять диоксид углерода, образующийся в результате разложения гумуса и карбонатов.

4.2 Характеристика фотометрического метода анализа

Фотометрический метод анализа - совокупность методов молекулярно-абсорбционного спектрального анализа, основанных на избирательном поглощении электромагнитного излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соединения с подходящим реагентом. Концентрацию определяемого компонента устанавливают по закону Бугера -Ламберта - Бера. Фотометрический метод включает визуальную фотометрию, спектрофотометрию и фотоколориметрию. Последняя отличается от спектрофотометрии тем, что поглощение света измеряют главным образом в видимой области спектра, реже - в ближних УФ и ИК областях (т. е. в интервале длин волн от ~ 315 до ~ 980 нм), а также тем, что для выделения нужного участка спектра (шириной 10-100 нм) используют не монохроматоры, а узкополосные светофильтры.

Приборами для фотоколориметрии служат фотоэлектроколориметры (ФЭК), характеризующиеся простотой оптической и электрической схем. Большинство фотометров имеет набор из 10-15 светофильтров и представляет собой двухлучевые приборы, в которых пучок света от источника излучения (лампа накаливания, редко ртутная лампа) проходит через светофильтр и делитель светового потока (обычно призму), который делит пучок на два, направляемые через кюветы с исследуемым раствором и с раствором сравнения. После кювет параллельные световые пучки проходят через калиброванные ослабители (диафрагмы), предназначенные для уравнивания интенсивностей световых потоков, и попадают на два приемника излучения (фотоэлементы), подключенные по дифференциальной схеме к нуль-индикатору (гальванометр, индикаторная лампа). Недостаток приборов - отсутствие монохроматора, что приводит к потере селективности измерений; достоинства фотометров - простота конструкции и высокая чувствительность благодаря большой светосиле. Измеряемый диапазон оптической плотности составляет приблизительно 0,05-3,0, что позволяет определять многие элементы и их соединения в широком интервале содержаний - от ~ 10-6 до 50% по массе. Для дополнительного повышения чувствительности и селективности определений существенное значение имеют подбор реагентов, образующих интенсивно окрашенные комплексные соединения с определяемыми веществами, выбор состава растворов и условий измерений. Погрешности определения составляют около 5%.

При так называемом дифференциальном фотометрическом анализе оптическую плотность анализируемого раствора измеряют относительно оптической плотности (которая не должна быть меньше 0,43) раствора сравнения. Последний содержит определяемый компонент в концентрации, близкой к концентрации этого компонента в анализируемом растворе. Это позволяет определять сравнительно большие концентрации веществ с погрешностью 0,2-1% (в случае спектрофотометрии). При фотометрическом титровании получают зависимость оптической плотности титруемого раствора от объема прибавляемого титранта (кривую титрования). По излому на этой кривой определяют конечную точку титрования и, следовательно, концентрацию исследуемого компонента в растворе.

4.3 Фотометрический метод определения углерода органических соединений

Фотометрический метод определения углерода органических соединений является косвенным методом. При использовании этого метода о содержании гумуса судят по количеству Cr 3+ , образовавшемуся в процессе окисления углерода. Вариант фотометрического метода, применяемый в России и странах бывшего СССР, был предложен Тюриным.

При окислении гумуса раствором дихромата калия углерод органических соединений превращается в СО 2 , a Cr(VI) восстанавливается до Сг(Ш). Количество образовавшегося в процессе реакции Сг 3+ эквивалентно содержанию углерода органических соединений (и других восстановителей) в навеске почвы. Поэтому углерод органических соединений можно определять по количеству образовавшегося в процессе анализа Сг 3+ . Для этой цели используют фотометрический метод.

Хром относится к группе переходных элементов, 3d-opбиталь которых не полностью заполнена электронами. Ионы Сг 2 О 7 2- и Сг 3+ обладают собственной окраской.

Окраска чистого раствора КгСг 2 О 7 в зависимости от концентрации меняется от желтой до красновато-оранжевой, окраска растворов Cr 2 (SO 4) 3 -- зеленая. Спектры поглощения растворов, так же как и окраска растворов, различны.

В пределах видимой области спектра (400--800 нм) на кривой светопоглощения раствора дихромата калия наблюдается один четко выраженный максимум при длине волны 447 нм. По мере увеличения длин волн оптическая плотность падает и достигает практически нулевого значения в области длин волн 570--580 нм. Максимум на кривой светопоглощения раствора Сг 3+ приходится на область длин волн 584--594 нм, т.е. на тот участок спектра поглощения К 2 Сг 2 0 7 , где оптическая плотность раствора практически равна нулю. Разница в расположении максимумов на кривых светопоглощения растворов Сг 2 О 7 2- и Сг 3+ позволяет фотометрическим методом определить концентрацию разных валентных форм хрома при совместном присутствии в растворе.

Концентрацию Сг 3+ удобно определять в области длин волн 584 - 594 нм, так как в ней светопоглощение растворов Сг 3+ максимально, а оптическая плотность растворов К 2 Сг 2 0 7 практически равна нулю и К 2 Сг 2 0 7 не оказывает влияния на результаты определения Сг 3+ . Возможность селективного измерения оптической плотности Сг 3+ лежит в основе фотометрического метода определения углерода органических соединений.

После взаимодействия дихромата калия с почвой измеряют оптическую плотность раствора в области длин волн, соответствующей максимуму поглощения излучения Сг 3+ (590 нм), определяют количество Сг 3+ и рассчитывают эквивалентное ему количество углерода органических соединений.

Применение фотометрического метода для определения органического углерода по количеству образовавшегося Сг 3+ позволяет не устанавливать точные концентрацию и объем, взятого для анализа навески почвы раствора дихромата калия. Объем добавляемого раствора можно измерять с помощью мерного цилиндра.

5. Практическая часть

В экспериментальной части определение органического вещества в почвах проводили по методу Тюрина в модификации Цинао.

Метод основан на окислении органического вещества раствором двухромовокислого калия в серной кислоте и последующее определении трехвалентного хрома, эквивалентного содержанию органического вещества, на фотоэлектроколориметре.

Метод не пригоден для проб с массовой долей хлорида более 0,6% и проб с массовой долей органического вещества более 15%

Предельные значения относительной погрешности результатов анализа для двусторонней доверительной вероятности Р=0,95 составляют в процентах:

20 - при массовой доле органического вещества до 3%

15 - свыше 3 до 5%

10 - свыше 5 до 15%.

Аппаратура и реактивы

Фотоэлектрокалориметр КФК 3-01

Водяная баня

Весы торзионные или другие с погрешностью не более 1мг.

Пробирки стеклянные термостойкие вместимостью 50мл. по ГОСТ 23932

Штатив для пробирок

Бюретка или дозатор для отмеривания 10 мл. хромовой смеси

Палочки стеклянные длиной 30 см.

Цилиндр для отмеривания 40 мл. воды

Груши резиновая со стеклянной трубкой или устройство для барбатации

Бюретка вместимостью 50 мл.

Колбы мерные вместимостью 1л.

Кружка фарфоровая вместимостью 2 л.

Колба коническая вместимостью 1л.

Колбы конические или технологические емкости вместимостью не менее 100 мл.

Аммоний-железо (II) сернокислый (соль Мора) по ГОСТ 4208

Калий двухромовокислый по ГОСТ 4220

Калий марганцовокислый, стандарттитр для приготовления раствора концентрации (1/5КMnO 4)=0,1 моль/л.

Кислота сернокислая по ГОСТ 4204 концентрированная и раствор концентрации (1/2 H 2 SO 4)=1моль/л.

Методика определения

Массу пробы почвы или породы для анализа определяют, исходя из предполагаемого содержания органического вещества по, по таблице 1.

Пробы почвы или породы взвешивают с погрешностью не более 1 мг и помещают в пробирки, установленные в штативы. К пробиркам приливают по 10 мл. хромовой смеси. В каждую пробирку помещают стеклянную палочку и тщательно перемешивают пробу с хромовой смесью. Затем штативы с пробирками опускают в кипящую водную баню.

Таблица 1 - Зависимость массы пробы для анализа то массовой доли органического вещества

Уровень воды в бане должен быть на 2-3см выше уровня хромовой смеси в пробирках. Продолжительность нагревания суспензии - 1ч с момента закипания воды в бане после погружения в нее пробирок. Содержимое перемешивают стеклянными палочками через каждые 20 мин. По истечении штативы с пробирками перемещают в водяную баню с холодной водой. После охлаждения в пробирки приливают по 40 мл воды. Затем из пробирок вынимают палочки, тщательно перемешивают суспензии барбатацией воздуха и оставляют до оседания твердых частиц и полного осветления надосадочной части раствора.

Затем приготавливают растворы сравнения. В 9 пробирок наливают по 10 мл хромовой смеси и нагревают их в течение 1 ч в пробирки приливают указанные в таблице 2 объемы дистиллированной воды и раствора восстановителя. Растворы тщательно перемешивают барбатацией воздуха.

Таблица 2 - Приготовление растворов сравнения

Фотометрирование растворов проводят в кювете с толщиной просвечиваемого слоя 1 - 2 см относительно первого раствора сравнения при длине волны 590 нм или используя оранжево-красный светофильтр с максимумом пропускания в области 560 - 600 нм. Растворы в кювету фотоэлектрокалориметра переносят осторожно, не взмучивая осадка.

В данной работе мы использовали хромовую смесь, которую готовили из дихромата калия K 2 Cr 2 O 7 квалификации «Ч».

Приготовление хромовой смеси

Для приготовления 500 мл хромовой смеси, 10,0243мг тонкоизмельченного дихромата калия поместили в мерную колбу 250 мл, растворили в воде доведя объем до метки, и перелили в фарфоровую кружку. К приготовленному раствору приливали порциями по 25 мл с интервалом в 10 - 15 мин 250 мл концентрированной серной кислоты. Кружку с раствором оставили до полного осаждения. Затем раствор перелили в склянку из темного стекла.

Приготовление раствора соли Мора концентрации 0,1 моль/л

Раствор восстановителя - раствор соли Мора концентрации 0,1 моль/л и объемом 200 мл готовили из навески соли Мора. Навеску массой 8,0153мг растворили 140 мл серной кислоты концентрации С(1/2H 2 SO 4)=1 моль/л, отфильтровали через двойной складчатый фильтр в мерную колбу и долили 60 мл воды.

Концентрацию раствора проверяли титрованием по рабочему раствору перманганата калия с точной концентрацией С(1/5КMnO 4)=0,0957 моль/л. Для титрования в три конические колбы отмерили с помощью буретки по 10 мл приготовленного раствора восстановителя, прилили по 1 мл концентрированной серной кислоты, 50 мл воды и титровал раствором перманганата калия до появления слабо-розовой окраски, не исчезающей в течение 1 мин. Затем для вычисления коэффициента поправки использовали среднее арифметическое значение результатов трех титрований.

V1(КMnO 4)=11,5 мл

V2(КMnO 4)=11,7 млV ср (КMnO 4)=11,6 мл

V3(КMnO 4)=11,6 мл

где V ср - объем раствора перманганата калия, израсходованный на титрование, мл;

V - Объем раствора-восстановителя, отобранный для титрования, мл.

Объектом анализа служила почва целинных земель г.Бузулука. Отбор проб проводили на глубине 0-10, 10-20, и 20-30 см. В образцах почвенных горизонтов определяли процентное содержание органического вещества, при этом для каждой пробы проводили три параллельных определения для получения наибольшей точности результатов анализа.

Массу пробы для анализа (100мг) определили исходя из предполагаемого содержания органического вещества (4-7%). Пробы почвы взвешивали с погрешностью не более 1мг. Результаты взвешиваний представлены в таблице 3.

Таблица 3 - Масса пробы для анализа.

номер взвешивания

масса навески, г

Проведение анализа

Анализ проводили в соответствии с методикой. Каждую из навесок помещали в коническую колбу объемом 250 мл, в каждую из колб прилили по 10 мл хромовой смеси, затем образовавшуюся смесь тщательно перемешали стеклянной палочкой и поставили вместо водяной бани в сушильный шкаф на 20 мин при температуре 120 0 С.

Ровно через 20 мин от момента достижения необходимой температуры, вынули колбы с суспензией, перемешали содержимое и остудили. Затем дополнительно перемешали суспензию барбатацией воздуха и оставили для оседания твердых частиц.

Затем приготовили растворы сравнения. В девять конических колб прилили по 10 мл хромовой смеси и нагрели в течение 20 мин в сушильном шкафу, аналогично исследуемым пробам. После охлаждения в колбы прилили объемы дистиллированной воды и раствора восстановителя указанные в таблице 2.

Фотометрирование анализируемых растворов и растворов сравнения проводили на фотоэлектрокалориметре КФК 3-01 в кювете с толщиной просвечиваемого слоя 1 см относительно раствора сравнения №1 при длине волны 590 нм.

Массу органического вещества в анализируемой пробе определили по градуировочному графику. При построении градуировочного графика по оси абсцисс откладывали массу органического вещества в миллиграммах, соответствующую объему восстановителя в растворе сравнения, а по оси ординат - соответствующее показание прибора.

Построение градуировочного графика

y =0,03x + 1,4·10 -4

Массовую долю органического вещества (X) в процентах вычисляли по формуле

где m - масса органического вещества в анализируемой пробе, найденная по графику, мг;

К - коэффициент поправки концентрации восстановителя;

m 1 - масса пробы, мг;

100 - коэффициент пересчета в проценты.

Результаты измерения оптической плотности, расчета массовой доли органического вещества в образцах, а также ошибка определения представлены в сводной таблице № 4

Таблица 4 - Результаты анализа

А-оптическая плотность

A- средняя

m орг. в-ва по графику, мг

m огр. в-ва фактическая,

w орг. в-ва в пробе,%

ошибка определения,

Заключение

В результате проделанной нами работы были проанализированы на содержание органического вещества три образца почв целинных земель отобранных близ г. Бузулука на глубине 0-10, 10-20, 20-30 см. При этом массовая доля гумуса, рассчитанная исходя из результатов анализа составила 5,9; 4,75; 4,06 процента соответственно, ошибка определения 8,9; 4,6; 5,4 соответственно для трех образцов почв. Рассчитанная массовая доля подтверждает предположение, высказанное нами ранее о том, что массовая доля гумуса в исследуемых нами образцах варьируется в интервале от 4 до 7 процентов. На основе полученных данных можно сделать вывод, что данная почва является среднегумусовой. Такое содержание гумуса является оптимальным для почв данного региона. При меньшем содержании гумуса урожаи сельскохозяйственных культур падают, но повышение его содержания до более высокого уровня не приводит к заметному росту урожайности при используемых системах земледелия.

Список использованных источников

1. Воробьева А.А., Химический анализ почв: учебник.- М.: Изд-во МГУ, 1998 - 270с.

2. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М., Биология почв: Учебник - 3-е изд. испр. и доп - М: Изд-во МГУ, 2005-445с.

3. Иванов Д.Н. Спектральный анализ почв: Москва «Колос», 1974-270с.

4. Крешков А.П. Основы аналитической химии. Книга третья. Изд. 2-е, перераб. М., «Химия», 1977-488с.

5. Орлов Д.С. Химия почв: Учебник/Д.С. Орлов, Л.К. Садовникова, Н.И. Суханова. - М.: Высш.шк., 2005.-558с.: ил.

6. Пономарева В.В., Плотникова Т.А. Гумус и почвообразование. - Л: Наука, 1980 -438с.

Размещено на Allbest.ru

Подобные документы

    Мониторинг, классификация почв. Методика определения гигроскопической влаги почвы, обменной кислотности. Определение общей щелочности и щелочности, обусловленной карбонат-ионами. Комплексонометрическое определение валового содержания железа в почвах.

    задача , добавлен 09.11.2010

    Сущность агрономической химии. Особенности почвы, система показателей химического состава, принципы определения и интерпретации. Методы определения приоритетных загрязняющих веществ. Анализ растений. Определение видов и форм минеральных удобрений.

    курсовая работа , добавлен 25.03.2009

    Цель дисциплины "Химия нефти". История и основные направления развития химии и физики органических веществ. Характеристика групп углеводородов нефти. Гипотеза органического происхождения нефти из органического вещества, рассеянного в осадочных породах.

    реферат , добавлен 06.10.2011

    Понятие количественного и качественного состава в аналитической химии. Влияние количества вещества на род анализа. Химические, физические, физико-химические, биологические методы определения его состава. Методы и основные этапы химического анализа.

    презентация , добавлен 01.09.2016

    Грань между органическими и неорганическими веществами. Синтезы веществ, ранее вырабатывавшихся только живыми организмами. Изучение химии органических веществ. Идеи атомистики. Сущность теории химического строения. Учение об электронном строении атомов.

    реферат , добавлен 27.09.2008

    Практическое значение аналитической химии. Химические, физико-химические и физические методы анализа. Подготовка неизвестного вещества к химическому анализу. Задачи качественного анализа. Этапы систематического анализа. Обнаружение катионов и анионов.

    реферат , добавлен 05.10.2011

    Хроматомасс-спектрометрия в органической химии. Инфракрасная спектроскопия: физико-химические основы, приборы. Пример хроматограммы по всем ионам. Блок-схема фурье-спектрометра. Расшифровка формулы органического соединения по данным элементного анализа.

    контрольная работа , добавлен 17.05.2016

    Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.

    реферат , добавлен 23.03.2009

    Торф как растительное сырье. Химический состав растений-торфообразователей. Направления химической переработки торфа. Методы анализа группового химического состава торфа. Методика проведения фракционно-группового анализа по методу Н.Н. Бамбалова.

    дипломная работа , добавлен 26.09.2012

    Физико-химические оценки механизмов поглощения свинца. Почва как полифункциональный сорбент. Методы обнаружения и количественного определения соединений свинца в природных объектах. Пути поступления тяжелых металлов в почву. Реакции с компонентами почвы.

Из косвенных методов определения гумуса наибольшим распространением пользуется метод И.В.Тюрина, основанный на окислении углерода органического вещества почвы сернокислым раствором дихромата калия, избыток которого оттитровывается раствором соли Мора. Фактически этим методом определяют окисляемость гумуса. Если принять, что при взаимодействии раствора дихромата калия с почвой происходит только окисление углерода гумуса и восстановление Cr 2 O 7 2- до Сr 3+ , то схематично реакцию можно выразить следующим уравнением:

3С + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CO 2 + 2Cr 2 (SO 4) 3 + 2K 2 SO 4 + 8H 2 O

Поскольку раствор дихромата калия приливается к навеске почвы с избытком, то какая-то его часть остается не израсходованной после завершения реакции окисления углерода. Непрореагировавший избыток Cr 2 O 7 2- оттитровывается раствором соли Мора (NH 4) 2 SO 4 ∙ FeSO 4 ∙ 6H 2 O:

K 2 Cr 2 O 7 + 6FeSO 4 + 7H 2 SO 4 → Cr 2 (SO 4) 3 + 3Fe 2 (SO 4) 3 + K 2 SO 4 +7H 2 O

Объем раствора соли Мора, пошедший на титрование, используется при расчете содержания углерода в почве.

При взаимодействии с гумусом ион Cr 2 O 7 2- реагирует не только с углеродом, но и с водородом, входящим в состав органических соединений:

12Н + 2K 2 Cr 2 O 7 +8H 2 SO 4 → 2Cr 2 (SO 4) 3 + 2K 2 SO 4 + 14H 2 O

Поскольку продуктом окисления водорода является вода, то он не будет оказывать влияния на результаты определения углерода лишь в том случае, когда соотношение атомов водорода и кислорода в составе гумуса почвы будет как и в H 2 O равно 2:1. Если в гумусе соотношение Н:О >2, то на его окисление расходуется больше K 2 Cr 2 O 7 , чем требуется для окисления углерода и результаты получаются завышенными. При соотношении Н:О < 2 на окисление гумуса K 2 Cr 2 O 7 израсходуется меньше, чем необходимо для окисления углерода. В этом случае результаты будут заниженными.

Сернокислый раствор дихромата калия вступает в реакцию не только с гумусом, но и с некоторыми минеральными компонентами почвы.

При анализе почв, содержащих свободные карбонаты, происходит частичная нейтрализация серной кислоты, однако это не влияет на результаты определения углерода гумуса.

Если почвы относятся к засоленным и содержат ионы хлора, то результаты определения общего гумуса оказываются завышенными, поскольку наряду с окислением углерода, Cr 2 O 7 2- расходуется и на окисление хлорид-ионов. Наличие в гидроморфных почвах восстановленных ионов железа и марганца также приводит к получению завышенных результатов, так как часть Cr 2 O 7 2- идет на окисление этих ионов. Однако ограничения на использование метода Тюрина для определения содержания гумуса в гидроморфных почвах относятся только к свежеотобранным образцам. В литературе неоднократно отмечалось, что при анализе образцов гидроморфных почв, высушенных до воздушно-сухого состояния, результаты определения гумуса, полученные по методу Тюрина, практически не отличаются от результатов полученных по методу Кноппа-Сабанина. Следовательно, метод Тюрина может быть использован и для анализа воздушно-сухих образцов гидроморфных почв.

К недостаткам метода Тюрина следует отнести неполное окисление органического вещества, особенно при анализе образцов из оторфованных или обогащенных разложившимися растительными остатками горизонтов. Содержание гумуса, найденное по методу Тюрина, составляет 85-95% от количества определяемого методом сухого сжигания по Густавсону. Для более полного окисления углерода органических соединений раствором дихромата калия И.В. Тюрин рекомендовал использовать в качестве катализатора 0,1-0,2 г Ag 2 SO 4 . В этом случае окисляется 95-97% углерода органических соединений, однако в практике массовых анализов катализатор обычно не применяется.

Ход анализа. На аналитических (или торзионных) весах берут навеску почвы, подготовленной для определения общего гумуса, с точностью до третьего знака. Рекомендуется придерживаться следующих навесок (В.В. Пономарева, Т.А. Плотникова, 1980):

Навески почв переносят в сухие чистые конические колбочки на 100 мл и приливают к ним из бюретки точно по 10 мл 0,4 н раствора хромовой смеси. Это густая вязкая жидкость, и если ее приливать быстро, то часть ре­актива останется на стенках бюретки, что приведет к большой неточности результатов анализа. Хромовую смесь нужно приливать медленно, с такой скоростью, что бы были видны падающие капли. Носик бюретки должен прикасаться к горлышку колбы во избежание разбрызгивания реактива при свободном падении капель.

Колбы закрывают маленькими воронками или пробкой - холодильни­ком и ставят на предварительно разогретую плитку. С момента появления крупных пузырьков газа раствор должен, умерено кипеть точно 5 мин. Не следует принимать за начало кипения интенсивное выделение мелких пузырьков поглощенного почвой воздуха, которое проис­ходит еще до закипания. Кипение всегда должно быть более и или менее одинаковым по интенсивности: не слишком бурным и не слишком слабым, а пузырьки чуть больше макового зернышка. Кипение не должно сопровож­даться выделением пара из воронки.

В процессе кипения раствор хромовой смеси изменяет свою окраску от красновато-коричневой до буровато-коричневой, а иногда и зеленой. Зе­леный цвет хромовой смеси после окончания кипячения свидетельствует о том, что дихромата калия не хватило для полного окисления гумуса почвы. В этом случае анализ нужно по­вторить с меньшей навеской почвы.

По истечении времени кипения колбы снимают с плитки и охлаждают. Воронку или пробку-холодильник, а также стенки колбы обмывают из промывалки дистиллированной водой, разбавляя раствор в колбе в 2-3 раза. Добавляют 5-6 капель индикатора (0,2% раствор фенилантраниловой кислоты) и титруют непрореагировавший остаток хромовой смеси 0,2 н. рас­твором соли Мора до перехода буровато-коричневой окраски сначала в фио­летовую, а затем в зеленую. Окраска хромовой смеси, особенно в конце тит­рования, меняется очень резко, поэтому титровать необходимо осторожно и все время энергично перемешивать содержимое колбочки круговыми движениями. Переход фиолетовой окраски в зеленую происходит от одной капли соли Мора. Надежные результаты получаются в том случае, когда на титрование остатка дихромата калия идет не менее 10 мл 0,2 н раствора соли Мора.

В строго аналогичных условиях проводят холостое определение в 2-х кратной повторности, добавляя в колбу вместо анализируемой почвы около 0,1 г прокаленной почвы или пемзы.


где V 1 – количество раствора соли Мора, израсходованное на титрование 10 мл хромовой смеси в холостом опыте, мл; V 2 – количество раствора соли Мора, пошедшее на титрование хромовой смеси анализируемого образца, мл; н – нормальность соли Мора; 0,003 – молярная масса эквивалента углерода, г/моль; m – навеска почвы, г; Kн 2 о – коэффициент пересчета на абсолютно сухую почву; 100 – множитель для пересчета на 100 г почвы.

Пример расчета . Навеска почвы взятая для определения гумуса равна 0,305 г. На титрование холостой пробы пошло 25,8 мл раствора соли Мора, на титрование анализируемого образца затрачено 22,3 мл раствора соли Мора. Нормальность раствора соли Мора – 0,204. Коэффициент пересчета на абсолютно сухую почву равен 1,072. Содержание органического углерода равно:

Гумус = 0,96 ∙ 1,724 = 1,66%.

Для анализа используют следующие реактивы:

1. 0,4 н. раствор K 2 Cr 2 O 7 в разбавленной (1:1) серной кислоте. 40 г K 2 Cr 2 O 7 растворяют в 500-600 мл дистиллированной воды и фильтруют через бумажный фильтр в мерную колбу емкостью 1 л. Раствор доводят до метки дистиллированной водой и переливают в термостойкую посуду емкостью 2,5-5 л. К раствору K 2 Cr 2 O 7 в вытяжном шкафу приливают небольшими порциями (примерно по 100 мл) при осторожном и многократном перемешивании 1 л концентрированной H 2 SO 4 (пл. 1,84). При смешивании раствора с серной кислотой происходит сильное разогревание жидкости, поэтому выполнять операции нужно очень аккуратно и пользоваться только термостойкой посудой.

Приготовленный раствор закрывают воронкой или стеклом и оставляют стоять для полного охлаждения до следующего дня, затем переливают в бутыль с притертой пробкой и хранят в темном месте.

2. 0,2 н. раствор соли Мора. Берут 80 г соли (NH 4) 2 SO 4 ∙ FeSO 4 ∙ 6H 2 O (используют только голубые кристаллы, побуревшие отбрасывают ) помещают в колбу, заполненную 650-700 мл 1 н раствора H 2 SO 4 и взбалтывают раствор до полного растворения соли. Затем раствор отфильтровывают в мерную колбу на 1 л и доводят до метки дистиллированной водой. Раствор соли Мора хранят в бутыли изолированной от воздуха склянкой Тищенко с щелочным раствором пирогаллола или трубкой с кристаллами соли Мора.

Нормальность раствора соли Мора устанавливают и проверяют по 0,1 н. раствору KMnO 4 . В связи с тем, что нормальность соли Мора быстро изменяется, проверять ее нужно через 1-2 дня. Для этого в коническую колбу на 250 мл мерным цилиндром приливают 1 мл H 2 SO 4 (плотность 1,84), от­меряют бюреткой 10 мл раствора соли Мора, приливают 50 мл дистиллиро­ванной воды и титруют 0,1 н. раствором КМnО 4 (приготовленным из фиксонала) до слабо-розовой окраски, не исчезающей в течении 1 мин. Титрование повторяют и берут среднее значение. Нормальность раствора соли Мора находят по формуле:

V 1 ∙ N 1 = V 2 ∙ N 2

где V 1 и N 1 - объем и нормальность раствора соли Мора, V 2 и N 2 - объем и нормальность раствора КМnО 4 .

3. 0,2% раствор фенилантраниловой кислоты C 13 H 11 O 2 N. Фенилатраниловая кислота нерастворима в воде, поэтому индикатор готовят в содо­вом растворе, для чего 0,2 г фенилантраниловой кислоты растворяют в 100 мл 0,2% раствора безводной соды (Na 2 CO 3). Для лучшего растворения навеску фенилантраниловой кислоты предварительно увлажняют в фарфоровой чашке 0,2% раствором соды до сметанообразного состояния и в таком виде тщательно перемешивают стеклянной палочкой. После этого приливают остальной объем раствора соды.

4. 1 н. раствор H 2 SO 4 . В мерную колбу на 1 л, заполненную ~ 500 мл дистиллированной воды, добавляют отмеренные цилиндром 28 мл концентрированной H 2 SO 4 и перемешивают. Дают колбе остыть до комнатной температуры, доводят дистиллированной водой до метки и тщательно перемешивают.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ
СОЮЗА ССР

ПОЧВЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКОГО ВЕЩЕСТВА

ГОСТ 26213-91

КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ СССР
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Дата введения 01.07.93

Настоящий стандарт устанавливает фотометрический и гравиметрический методы определения органического вещества в почвах, вскрышных и вмещающих породах.

Общие требования к проведению анализов - по ГОСТ 29269 .

1. ОПРЕДЕЛЕНИЕ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ПО МЕТОДУ ТЮРИНА В МОДИФИКАЦИИ ЦИНАО

Метод основан на окислении органического вещества раствором двухромовокислого калия в серной кислоте и последующем определении трехвалентного хрома, эквивалентного содержанию органического вещества, на фотоэлектроколориметре.

Метод не пригоден для проб с массовой долей хлорида более 0,6 % и проб с массовой долей органического вещества более 15 %.

Предельные значения относительной погрешности результатов анализа для двусторонней доверительной вероятности Р = 0,95 составляют в процентах (отн.):

20 - при массовой доле органического вещества до 3 %;

15 - св. 3 до 5 %;

10 - св. 5 до 15 %.

Фотоэлектроколориметр.

Баня водяная.

Весы торзионные или другие с погрешностью не более 1 мг.

Пробирки стеклянные термостойкие вместимостью 50 см 3 по ГОСТ 23932 .

Штатив для пробирок.

Бюретка или дозатор для отмеривания 10 см 3 хромовой смеси.

Палочки стеклянные длиной 30 см.

Цилиндр или дозатор для отмеривания 40 см 3 воды.

Груша резиновая со стеклянной трубкой или устройство для барбатации.

Бюретка вместимостью 50 см 3 .

Колбы мерные вместимостью 1 дм 3 .

Кружка фарфоровая вместимостью 2 дм 3 .

Колба коническая вместимостью 1 дм 3 .

Колбы конические или технологические емкости вместимостью не менее 100 см 3 .

Аммоний-железо (II ) сернокислый (соль Мора) по ГОСТ 4208 или железо ( II ) сернокислое 7-водное по ГОСТ 4148 .

Калия гидроокись по ГОСТ 24363 .

Калий двухромовокислый по ГОСТ 4220 .

Калий марганцовокислый, стандарт-титр для приготовления раствора концентрации с (1 / 5 КМnО 4) = 0,1 моль/дм 3 (0,1 н.).

Натрий сернистокислый по ГОСТ 195 или натрий сульфит 7-водный по ТУ 6-09.5313.

Масса пробы для анализа, мг

1.4.2. Приготовление растворов сравнения

В девять пробирок наливают по 10 см 3 хромовой смеси и нагревают их в течение 1 ч в кипящей водяной бане вместе с анализируемыми пробами. После охлаждения в пробирки приливают указанные в табл. объемы дистиллированной воды и раствора восстановителя. Растворы тщательно перемешивают барбатацией воздуха.

Таблица 2

Номер раствора сравнения

Объем воды, см 3

Объем раствора восстановителя, см 3

Масса органического вещества, эквивалентная объему восстановителя в растворе сравнения, мг

1.4.3. Фотометрирование растворов

Фотометрирование растворов проводят в кювете с толщиной просвечиваемого слоя 1 - 2 см относительно раствора сравнения № 1 при длине волны 590 нм или используя оранжево-красный светофильтр с максимумом пропускания в области 560 - 600 нм. Растворы в кювету фотоэлектроколориметра переносят осторожно, не взмучивая осадка.

1.5. Обработка результатов

1.5.1. Массу органического вещества в анализируемой пробе определяют по градуировочному графику. При построении градуировочного графика по оси абсцисс откладывают массу органического вещества в миллиграммах, соответствующую объему восстановителя в растворе сравнения, а по оси ординат - соответствующее показание прибора.

1.5.2. Массовую долю органического вещества (X ) в процентах вычисляют по уравнению

где m - масса органического вещества в анализируемой пробе, найденная по графику, мг;

К - коэффициент поправки концентрации восстановителя;

m 1 - масса пробы, мг;

100 - коэффициент пересчета в проценты.

1.5.3. Допускаемые относительные отклонения от аттестованного значения стандартного образца для двусторонней доверительной вероятности Р = 0,95 указаны в табл. .

Таблица 3

2. ГРАВИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ОРГАНИЧЕСКОГО ВЕЩЕСТВА В ТОРФЯНЫХ И ОТОРФОВАННЫХ ГОРИЗОНТАХ ПОЧВ

Метод основан на определении потери массы пробы после прокаливания при температуре 525 °С.

Отбор проб для анализа проводят по ГОСТ 28168 , ГОСТ 17.4.3.01 и ГОСТ 17.4.4.02 - в зависимости от целей исследований.

2.2. Аппаратура и реактивы - по ГОСТ 27784 .

2.3. Подготовка к анализу - по ГОСТ 27784 .

2.4. Проведение анализа - по ГОСТ 27784 .

2.5. Обработка результатов

2.5.1. Массовую долю зольности торфяных, оторфованных и других органических горизонтов почв в процентах вычисляют по

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Метод И.В. Тюрина основан на окислении углерода гумусовых веществ до СО2 0,4 н раствором двухромовокислого калия (К2Cr2O7). По количеству хромовой смеси, пошедшей на окисление органического углерода, судят о его количестве. Цель работы: научится определять содержание органического углерода почвы методом мокрого озоления по И.С. Тюрину. Материалы и оборудование: 1) конические колбы на 100 мл, 2) воронки, 3) 0,4 н раствор К2Cr2О7 в разбавленной Н2SО4 (1:1), 4) 0,1 н или 0,2 н раствор соли Мора, 5) 0,2% раствор фенилантраниловой кислоты, 6) бюретка для титрования, 7) электрическая плитка или газовая горелка. Ход выполнения работы: на аналитических весах берут навеску почвы 0,2-0,3 г. Навеску почвы осторожно переносят в коническую колбу на 100 мл. В колбу из бюретки приливают 10 мл хромовой смеси и содержимое осторожно перемешивают круговым движением. В колбу вставляют маленькую воронку, которая служит обратным холодильником, ставят колбу на асбестовую сетку или этернитовую плитку, затем содержимое колбы доводят до кипения и кипятят ровно 5 минут с момента появления крупных пузырьков СО2. Бурного кипения не допускают, так это приводит к искажению результатов из-за возможного разложения хромовой смеси. При массовых анализах рекомендуется кипячение заменить нагреванием в сушильном шкафу при 150°С в течение 30 минут. Колбу остужают, воронку и стенки колбы обмывают из промывалки дистиллированной водой, доводя объем до 30-40 мл. Добавляют 4-5 капель 0,2%-ного раствора фенилантраниловой кислоты и титруют 0,1н или 0,2н раствором соли Мора.

Конец титрования определяют переходом вишнево-фиолетовой окраски в зелёную. Проводят холостое определение, вместо навески почвы используя прокаленную почву или пемзу (0,20,3г). Содержание органического углерода вычисляют по формуле:

С = (100*(а - в) * КМ * 0,0003 * КН2О) * Р-1,

где С - содержание органического углерода, %; а - количество соли Мора, пошедшее на холостое титрование; в - количество соли Мора, пошедшее на титрование остатка хромовокислого калия; КМ - поправка к титру соли Мора; 0,0003 - количество органического углерода, соответствующее 1 мл 0,1н раствора соли Мора, г (применяя 0,2 н раствор соли Мора, количество органического углерода, соответствующее 1 мл соли Мора, равно 0,0006 г); КН2О - коэффициент гигроскопичности для перерасчета на абсолютно сухую навеску почвы; Р - навеска воздушно-сухой почвы, г. Вычисляют содержание гумуса из расчета, что в его составе содержится в среднем 58% органического углерода (1 г углерода соответствует 1,724г гумуса):

Гумус (%) = С(%)*1,724.

гумусовый озоление титрование

Табл. 1. Группировка почв лесных питомников таёжной зоны по обеспеченности гумусом (шкала Ленинградского НИИ лесного хозяйства

Гумус, % по Тюрину

Степень обеспеченности

Крайне бедные

Недостаточно обеспеченные

Средне обеспеченные

Хорошо обеспеченные

Размещено на Allbest.ru

...

Подобные документы

    Химический состав и органические вещества почвы. Модели строения гуминовых и фульвокислот. Методы выделения препаратов гумусовых кислот из почв. Характеристика методов исследования свойств гумусовых кислот. Сравнительный анализ методов определения гумуса.

    дипломная работа , добавлен 13.11.2011

    Определение степени опасности веществ, загрязняющих почву. Метод определения содержания микроэлементов в почве. Атомно-абсорбционное определение меди в почвенной вытяжке. Методы определения вредных веществ в почве. Применение ионоселективных электродов.

    реферат , добавлен 31.08.2015

    Характеристика климатических условий, рельефа и гидрологических условий, почвообразующих пород и естественной растительности. Структура почвенного покрова. Характеристика морфологических свойств преобладающих типов почв. Анализ содержания гумуса.

    курсовая работа , добавлен 13.05.2015

    Географическое положение и общие сведения о хозяйстве. Природные условия формирования почвенного покрова: климат, рельеф, гидрологические условия. Морфологические признаки серой лесной и дерново-карбонатной почвы. Бонитировка, охрана почвенного покрова.

    курсовая работа , добавлен 12.01.2015

    Понятие, особенности и процесс образования гумуса. Гуминовые вещества как основная органическая составляющая почвы, воды и твердых горючих ископаемых. Значение и роль гумификации в почвообразовании. Химическая структура и свойства гуминовых веществ.

    реферат , добавлен 15.11.2010

    Анализ почвенного покрова в границах лицензионных участков нефтегазодобывающего комплекса Ханты-Мансийского автономного округа - Югры. Морфологическое описание серых лесных почв. Процесс преобразования растительных остатков в серых лесных почвах.

    отчет по практике , добавлен 10.10.2015

    Гумус, его значение, пути увеличения содержания гумуса в почве. Севооборот, значение, классификация. Технологические операции, выполняемые при обработке почвы. Агротехничекие приемы. Яровой рапс. Значение. Морфологические и биологические особенности.

    контрольная работа , добавлен 20.05.2008

    Взаимодействие гумусовых веществ с минеральной частью почвы. Аэробные анаэробные процессы в почве. Их роль в плодородии и жизни растений. Агрономические особенности подзолистых почв и их окультуривание. Использование болот и торфа в сельском хозяйстве.

    контрольная работа , добавлен 12.01.2010

    презентация , добавлен 17.03.2014

    Свойства почвенного покрова Якутии и его география. Круговорот веществ и энергии. Факторы почвообразования. Воздушный режим почвы и содержание питательных веществ в ней. Распределение земельного фонда по категориям почв. Анализ сельскохозугодий.

Метод И. В. Тюрина основан на окислении органического вещества почвы хромовой кислотой до образования углекислоты. Количество кислорода, израсходованное на окисление органического углерода, определяют по разности между количеством хромовой кислоты, взятой для окисления, и количеством ее, оставшимся неизрасходованным после окисления. В качестве окислителя применяют 0,4 и. раствор К2Сr2O7 в серной кислоте, предварительно разбавленной водой в соотношении 1:1.
Реакция окисления протекает по следующим уравнениям:


Остаток хромовой кислоты, не израсходованной на окисление, оттитровывают 0,1 н. раствором соли Мора с индикатором дифениламином. Титрование солью Мора, представляющей собой двойную соль сернокислого аммония и сернокислой закиси железа - (NH4)2SO4 FeSO4 6Н2O, идет по следующему уравнению:

Полнота окисления органического вещества при соблюдении всех условий метода, указанных ниже, составляет 85-90% величины окисления методом сухого сжигания (по Густавсону).
Применение сернокислого серебра в качестве катализатора увеличивает полноту окисления до 95% (Комарова).
Для получения надежных результатов необходимо обратить внимание: 1) на тщательную подготовку почвы к анализу и 2) на точное соблюдение продолжительности кипячения при окислении органического вещества; само кипение окислительной смеси должно протекать спокойно.
Метод дает хорошую сходимость параллельных анализов, быстр, не требует специальной аппаратуры (в связи с чем может быть использован и в экспедиционных условиях) и в настоящее время является общепринятым, особенно при проведении массовых анализов.
Подготовка почвы к анализу. При подготовке почвы к анализу на содержание гумуса особое внимание должно быть обращено на удаление из почвы корешков и различных органических остатков растительного и животного происхождения.
Из взятого в поле и доведенного до воздушно-сухого состояния образца почвы берут среднюю пробу в количестве 50 г, тщательно отбирают пинцетом корни и видимые глазом органические остатки (панцири насекомых, семена, угольки и т. д.), раздавливают почвенные комки деревянным пестиком с резиновым наконечником и вновь тщательно отбирают корни, пользуясь при этом лупой.
Затем растирают почву в фарфоровой ступке и пропускают через сито с диаметром отверстий в 1 мм, после чего из нее снова берут среднюю пробу весом 5 г и повторяют отбор корешков, используя для этого следующий прием. Сухую стеклянную палочку энергично натирают сухой суконной или шерстяной тканью и быстро проводят на высоте около 10 см над почвой, распределенной тонким слоем по поверхности восковки или пергаментной бумаги.
Тонкие мелкие корешки и полуразложившиеся растительные остатки, которые до этого не удалось отобрать в связи с их малыми размерами, прилипают к поверхности наэлектризованной палочки и таким образом выносятся из почвы. Их снимают с палочки при повторном ее натирании. Не следует слишком низко проводить палочкой над поверхностью почвы во избежание выноса из почвы не только органических остатков, но и мелкозема.
В процессе отбора корешков надо неоднократно перемешивать почву и вновь распределять ее тонким слоем. Операцию следует вести до тех пор, пока на палочке будут обнаруживаться лишь единичные корешки. Чистоту отбора корешков контролируют, помимо того, просмотром почвы в лупу.
По окончании отбора корешков почву снова растирают в фарфоровой, яшмовой или агатовой ступке и пропускают через сито с диаметром отверстий в 0,25 мм. Описанным выше способом должен быть подготовлен весь образец в 5 г. Отбрасывать трудно поддающуюся растиранию часть образца ни в коем случае нельзя.
Почву, подготовленную вышеуказанным образом для анализа, следует хранить в пакетиках из пергаментной бумаги или восковки либо в пробирках с пробками.
Ход анализа. Навеску воздушно-сухой почвы для анализа на гумус берут на аналитических весах. Размер навески зависит от предполагаемого содержания гумуса в почве, причем учитывается тип почвы (чернозем, подзолистая и т. д.) и глубина взятия образца.
При содержании гумуса от 7 до 10% И. В. Тюрин рекомендует навеску в 0,1 г; при 4-7% - 0,2 г; при 2-4% - 0,3 г; меньше 2% - 0.5 г. В случае песчаных почв с малым содержанием гумуса навеску можно увеличить до 1 г.
При очень высоком содержании гумуса (свыше 15-20%) его определение по методу Тюрина становится ненадежным, так как не достигается полнота окисления.
Навески лучше брать точные - 0,1; 0,2 г, что облегчает в дальнейшем вычисления. Для взятия точных навесок можно пользоваться тарированным часовым стеклом диаметром 2,5-3 см, с которого навеску целиком переносят в колбу для сжигания при помощи маленького шпателя и кисточки для акварельных красок. Определение гумуса по Тюрину одновременно можно вести в 20-30 навесках.
Навески помещают в сухие конические колбы на 100 мл из обыкновенного стекла, туда же добавляют на кончике ножа порошкообразное сернокислое серебро. При выполнении массовых анализов сернокислое серебро не применяется. Для возможности сравнения получаемых в этом случае результатов с методом сухого сжигания И. В. Тюрин приводит коэффициент 1,17 (1936). Затем в каждую колбу приливают по 10 мл 0,4 н. раствора К2Сr2O7, приготовленного на смеси одной части H2SO4 (уд. веса 1,84) и одной части дистиллированной воды.
Раствор бихромата калия следует приливать из бюретки, отмеривая необходимый объем каждый раз от нуля и давая жидкости стекать всегда с одинаковой скоростью. Можно пользоваться также пипеткой, но обязательно снабженной в верхней части предохранительными шариками.
Очень удобна в данном случае делительная воронка из тугоплавкого стекла, приспособленная для работы с крепкими кислотами. Пользование такой воронкой намного ускоряет работу и делает ее безопасной.
После приливания раствора К2Сr2O7 в горлышко колб вставляют воронки диаметром около 4 см, содержимое колб осторожно перемешивают (следя, чтобы почва не прилипала к их стенкам), после чего колбы ставят на уже горячую этернитовую или песчаную электроплитку, или на плитку с обнаженной спиралью, но прикрытую слоем асбеста. Можно пользоваться также газовыми горелками, а в экспедиционных условиях - примусом или керосинкой, помещая нагревательный прибор под песчаную баню (сковорода с прокаленным кварцевым песком).
Содержимое колб доводят до кипения и кипятят ровно 5 мин. Необходимо точно отмечать начало кипения жидкости, не смешивая его с появлением в начале нагревания мелких пузырьков воздуха. Кипение должно быть равномерным и умеренным; выделение пара из воронки и подпрыгивание последней недопустимы. Сильного кипения следует избегать, чтобы не изменить концентрацию серной кислоты, увеличение которой может вызвать разложение хромовой кислоты. Во избежание слишком бурного кипения, кипячение на плитках с обнаженной спиралью недопустимо.
После 5-минутного кипячения колбы с нагревательного прибора снимают, дают им остыть, обмывают воронки над колбами с внутренней и наружной стороны дистиллированной водой из промывалки и содержимое колб количественно переносят в конические колбы на 250 мл, несколько раз тщательно ополаскивая колбу, в которой производилось окисление. Объем жидкости после переноса в колбу на 250 мл должен составлять 100-150 мл. Цвет жидкости - оранжево-желтый или зеленовато-желтый; позеленение ее свидетельствует о недостатке окислителя; анализ в этом случае необходимо повторить, уменьшив навеску.
К жидкости прибавляют 8 капель раствора дифениламина, являющегося индикатором, и титруют оставшуюся не израсходованной после окисления органического вещества хромовую кислоту 0.1 н. раствором соли Мора. Индикатор следует вносить непосредственно перед титрованием. Титрование ведут на холоду. Красно-бурая окраска жидкости, появляющаяся после прибавления дифениламина, при титровании раствором соли Мора постепенно переходит в интенсивно синюю, а затем в грязно-фиолетовую. С этого момента титрование ведут осторожно, прибавляя соль Мора по 1 капле и тщательно перемешивая содержимое колбы. Конец титрования - изменение грязно-фиолетовой окраски раствора в бутылочно-зеленую; после некоторого стояния (10-15 мин.) окраска жидкости становится зеленой. Появление при титровании ярко-зеленой окраски указывает на избыток соли Мора, т. е. на то, что раствор перетитрован; анализ в этом случае необходимо повторить.
Для устранения влияния ионов трехвалентного железа, которое окисляет индикатор и вызывает преждевременное изменение окраски раствора, применяют 85%-ную ортофосфорную кислоту. Ее вносят в колбу перед титрованием в количестве 2,5 мл; изменение окраски в конце титрования в присутствии фосфорной кислоты очень резкое и вызывается 1-2 каплями раствора соли Мора.
Одновременно с основными анализами в той же последовательности проводят холостой (в трехкратной повторности) для установления соотношения между 10 мл раствора хромовой смеси и раствором соли Мора. Для равномерного кипения жидкости при холостом анализе в колбу перед приливанием раствора хромовой смеси обязательно вносят около 0,1-0,2 г растертых в порошок прокаленных пемзы или почвы. В противном случае происходит неизбежное при кипячении чистого раствора перегревание, которое может вызвать разложение хромовой кислоты. В остальном поступают согласно описанному ходу анализа.
При проведении больших партий анализов на содержание гумуса по методу Тюрина (30-60 анализов единовременно) можно делать перерывы на следующих этапах работы: взятие навесок - один день; окисление, перенос в колбы для титрования и титрование - на другой день. Или, что менее желательно, взятие навесок и окисление проводить в один день, титрование - на следующий. В последнем случае содержимое колб после сжигания должно быть разбавлено и перенесено в колбы для титрования. Титрование холостых анализов в этом случае также должно быть оставлено до следующего дня. Титрование каждой партии необходимо всегда вести при одинаковых условиях освещения (при дневном или электрическом свете).
Похожие публикации